Mentions légales du service

Skip to content
Snippets Groups Projects
Commit d7c17132 authored by Alessandro's avatar Alessandro
Browse files

Add the name of the environments

parent a2c21e7c
No related branches found
No related tags found
No related merge requests found
......@@ -10,7 +10,8 @@ A python implementation of symbolic policy for interpretable reinforcement learn
### Installing dependencies
- clone this repo
- install with ` python -m pip install -r requirement.txt ` for base installation (no pygraphiz)
- install with ` python -m pip install -r requirement_with_pygrphivz.txt ` if you want to visualize program easily
- install with ` python -m pip install -r requirement_with_pygrphivz.txt ` if you want to visualize program easily
- install with `conda env create -f environment.yml` if you want to create a separate python environment with all the dependencies
## How to use
### Core functions
......@@ -73,3 +74,18 @@ seed: #set seed for random
## See the result
Once an experiment is finished, you can see inspect results like in `tutorial.ipynb`. This notebook show how to see and run an individual from a saved population.
## Environments
| **Environment** | **Name** |
|-----------------------|-------------------------------------|
| Cartpole | CartPole-v1 |
| Acrobot | Acrobot-v1 |
| MountainCar | MountainCarContinuous-v0 |
| Pendulum | Pendulum-v0 |
| InvDoublePend | InvertedDoublePendulumBulletEnv-v0 |
| InvPendSwingUp | InvertedPendulumSwingupBulletEnv-v0 |
| LunarLander | LunarLanderContinuous-v2 |
| BipedalWalker | BipedalWalker-v3 |
| BipedalWalkerHardCore | |
| Hopper | HopperBulletEnv-v0 |
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment