diff --git a/README.md b/README.md index 4da1a0687c44c8a29412ad6e90489db068b4bb21..339f740764b28f4f540312175a30c9a672d8267a 100644 --- a/README.md +++ b/README.md @@ -10,7 +10,8 @@ A python implementation of symbolic policy for interpretable reinforcement learn ### Installing dependencies - clone this repo - install with ` python -m pip install -r requirement.txt ` for base installation (no pygraphiz) -- install with ` python -m pip install -r requirement_with_pygrphivz.txt ` if you want to visualize program easily +- install with ` python -m pip install -r requirement_with_pygrphivz.txt ` if you want to visualize program easily +- install with `conda env create -f environment.yml` if you want to create a separate python environment with all the dependencies ## How to use ### Core functions @@ -73,3 +74,18 @@ seed: #set seed for random ## See the result Once an experiment is finished, you can see inspect results like in `tutorial.ipynb`. This notebook show how to see and run an individual from a saved population. + +## Environments + +| **Environment** | **Name** | +|-----------------------|-------------------------------------| +| Cartpole | CartPole-v1 | +| Acrobot | Acrobot-v1 | +| MountainCar | MountainCarContinuous-v0 | +| Pendulum | Pendulum-v0 | +| InvDoublePend | InvertedDoublePendulumBulletEnv-v0 | +| InvPendSwingUp | InvertedPendulumSwingupBulletEnv-v0 | +| LunarLander | LunarLanderContinuous-v2 | +| BipedalWalker | BipedalWalker-v3 | +| BipedalWalkerHardCore | | +| Hopper | HopperBulletEnv-v0 |