Newer
Older
# Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# Time profiling:
# python -m cProfile -o runtime/profiling.log -s name main.py
# Memory profiling:
# python -m memory_profiler main.py
# or
# mprof run main.py
# mprof plot
import brick.component.connection as cn_
import brick.component.extension as xt_
import brick.component.soma as sm_
import brick.general.feedback as fb_
# import brick.processing.image_verification as iv_
from sklgraph.skl_fgraph import skl_graph_t
from sklgraph.skl_graph import plot_mode_e
from sklgraph.skl_map import skl_map_t
import brick.processing.graph_extraction as ge_
import matplotlib.pyplot as pl_
import numpy as np_
import skimage.io as io_
# from skimage.segmentation import relabel_sequential
import skimage.morphology as mp_
import skimage.measure as ms_
import re as re_
if sy_.argv.__len__() < 2:
print("Missing parameter file argument")
sy_.exit(0)
if not (os_.path.isfile(sy_.argv[1]) and os_.access(sy_.argv[1], os_.R_OK)):
print("Wrong parameter file path or parameter file unreadable")
sy_.exit(0)
data_path = None
channel = None
size_voxel_in_micron = None
soma_low_c = None
soma_high_c = None
soma_selem_micron_c = None
soma_min_area_c = None
ext_low_c = None
ext_high_c = None
ext_selem_micron_c = None
ext_min_area_c = None
max_straight_sq_dist_c = None
max_weighted_length_c = None
scale_range = None
scale_step = None
alpha = None
beta = None
frangi_c = None
bright_on_dark = None
method = None
with_plot = None
in_parallel = None
exec(open(sy_.argv[1]).read()) # Only with parameters.py (older versions) or search_parameters.py (stable version)
soma_t = sm_.soma_t
extension_t = xt_.extension_t
print(f"STARTED: {tm_.strftime('%a, %b %d %Y @ %H:%M:%S')}")
start_time = tm_.time()
# Find the dimension of the image voxels in micron
size_voxel_in_micron = in_.FindVoxelDimensionInMicron(data_path, size_voxel_in_micron=size_voxel_in_micron)
NADAL Morgane
committed
# Image size verification - simple version without user interface
image = in_.ImageVerification(image, channel)
# iv_.image_verification(image, channel) # -> PySide2 interface # TODO: must return the modified image!
# /!\ conflicts between some versions of PySide2 and Python3
NADAL Morgane
committed
image = image[:, 800:, 800:] # 512 # 562 # Just for development
# pl_.matshow(image[image.shape[0] // 2, :, :])
# pl_.show()
#
# max_img = image.max()
# image.fill(image.min())
# image[2:3,10:11,:] = max_img
#
print(f"IMAGE: s.{img_shape} t.{image.dtype} m.{image.min()} M.{image.max()}")
# Intensity relative normalization (between 0 and 1).
image_for_soma = in_.IntensityNormalizedImage(image)
image_for_ext = in_.IntensityNormalizedImage(image)
print(f"NRM-IMG: t.{image_for_soma.dtype} m.{image_for_soma.min():.2f} M.{image_for_soma.max():.2f}")
axes = {}
# n_somas = 0
# n_extensions = 0
# somas = None # Tuple of soma objects
# extensions = None # Tuple of extension objects
soma_min_area_c = in_.ToPixel(soma_min_area_c, size_voxel_in_micron, dimension=(0, 1))
NADAL Morgane
committed
soma_selem_c = mp_.disk(in_.ToPixel(soma_selem_micron_c, size_voxel_in_micron))
som_nfo["map"] = soma_t.Map(image_for_soma, soma_low_c, soma_high_c, soma_selem_c)
som_nfo["map"], som_lmp = soma_t.FilteredMap(som_nfo["map"], soma_min_area_c)
som_nfo["lmp"], n_somas = ms_.label(som_nfo["map"], return_num=True)
# som_nfo["lmp"] = relabel_sequential(som_lmp)[0] # Use relabel instead of label to optimize the algorithm.
# n_somas = som_nfo["lmp"].max()
som_nfo["dist_to_closest"], som_nfo["influence_map"] = soma_t.InfluenceMaps(
som_nfo["lmp"]
)
somas = tuple(
soma_t().FromMap(som_nfo["lmp"], uid) for uid in range(1, n_somas + 1)
)
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
if with_plot:
fb_.PlotSomas(somas, som_nfo, axes)
ext_min_area_c = in_.ToPixel(ext_min_area_c, size_voxel_in_micron, dimension=(0, 1))
NADAL Morgane
committed
ext_selem_pixel_c = mp_.disk(in_.ToPixel(ext_selem_micron_c, size_voxel_in_micron))
scale_range_pixel = []
for value in scale_range:
value_in_pixel = in_.ToPixel(value, size_voxel_in_micron, decimals=1)
scale_range_pixel.append(value_in_pixel)
scale_range = tuple(scale_range_pixel)
scale_step = in_.ToPixel(scale_step, size_voxel_in_micron, decimals=1)
alpha = in_.ToPixel(alpha, size_voxel_in_micron, decimals=1)
beta = in_.ToPixel(beta, size_voxel_in_micron, decimals=1)
frangi_c = in_.ToPixel(frangi_c, size_voxel_in_micron)
enhanced_ext, ext_scales = extension_t.EnhancedForDetection(
image_for_ext,
scale_range,
scale_step,
alpha,
beta,
frangi_c,
bright_on_dark,
method,
in_parallel=in_parallel)
NADAL Morgane
committed
ext_nfo["coarse_map"] = extension_t.CoarseMap(enhanced_ext, ext_low_c, ext_high_c, ext_selem_pixel_c)
ext_nfo["coarse_map"], ext_lmp = extension_t.FilteredCoarseMap(ext_nfo["coarse_map"], ext_min_area_c)
ext_nfo["map"] = extension_t.FineMapFromCoarseMap(ext_nfo["coarse_map"])
ext_nfo["map"][som_nfo["map"] > 0] = 0
ext_nfo["lmp"], n_extensions = ms_.label(ext_nfo["map"], return_num=True)
# Use relabel instead of label to optimize the algorithm. BUT PROBLEM WITH THE NUMBER OF EXTENSIONS DETECTED !
# ext_nfo["lmp"] = relabel_sequential(ext_lmp)[0]
# n_extensions = ext_nfo["lmp"].max()
extensions = tuple(
extension_t().FromMap(ext_nfo["lmp"], ext_scales, uid)
for uid in range(1, n_extensions + 1)
)
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
if with_plot:
fb_.PlotExtensions(extensions, ext_nfo, img_shape)
# -- Preparation for Connections
dijkstra_costs = in_.DijkstraCosts(image, som_nfo["map"], ext_nfo["map"])
# -- Soma-Extention
print("\n--- Soma <-> Extension")
max_straight_sq_dist_c = in_.ToPixel(max_straight_sq_dist_c, size_voxel_in_micron)
max_weighted_length_c = in_.ToPixel(max_weighted_length_c, size_voxel_in_micron)
candidate_conn_nfo = cn_.CandidateConnections(
somas,
som_nfo["influence_map"],
som_nfo["dist_to_closest"],
extensions,
max_straight_sq_dist_c,
)
for ep_idx, soma, extension, end_point in candidate_conn_nfo:
if extension.is_unconnected:
print(f" Soma.{soma.uid} <-?-> Ext.{extension.uid}({ep_idx})", end="")
max_straight_sq_dist=max_straight_sq_dist_c,
if length <= max_weighted_length_c:
NADAL Morgane
committed
cn_.ValidateConnection(soma, extension, end_point, ep_idx, path, dijkstra_costs)
# soma.Extend(extensions, som_nfo["dist_to_closest"], dijkstra_costs)
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
if with_plot:
fb_.PlotSomasWithExtensions(somas, som_nfo, "all")
should_look_for_connections = True
while should_look_for_connections:
som_nfo["soma_w_ext_lmp"] = soma_t.SomasLMap(somas)
som_nfo["dist_to_closest"], som_nfo["influence_map"] = soma_t.InfluenceMaps(
som_nfo["soma_w_ext_lmp"]
)
candidate_conn_nfo = cn_.CandidateConnections(
somas,
som_nfo["influence_map"],
som_nfo["dist_to_closest"],
extensions,
max_straight_sq_dist_c,
)
should_look_for_connections = False
for ep_idx, soma, extension, end_point in candidate_conn_nfo:
if extension.is_unconnected:
print(f" Soma.{soma.uid} <-?-> Ext.{extension.uid}({ep_idx})", end="")
max_straight_sq_dist=max_straight_sq_dist_c,
if length <= max_weighted_length_c:
tgt_extenstion = extension_t.ExtensionContainingSite(extensions, path[-1])
NADAL Morgane
committed
cn_.ValidateConnection(tgt_extenstion, extension, end_point, ep_idx, path, dijkstra_costs)
should_look_for_connections = True
print(": Made")
else:
print("")
NADAL Morgane
committed
ext_nfo["lmp_ext"] = som_nfo['soma_w_ext_lmp'] - som_nfo['lmp']
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
if with_plot:
fb_.PlotSomasWithExtensions(somas, som_nfo, "with_ext_of_ext")
# -- Summary
print("\n")
for soma in somas:
print(soma)
# for extension in extensions:
# print(extension)
# snapshot = tr_.take_snapshot()
# top_file_stats = snapshot.statistics('lineno')
# print("Memory Profiling: Top 10 FILES")
# for stat in top_file_stats[:10]:
# print(stat)
# top_block_stats = snapshot.statistics('traceback')
# top_block_stats = top_block_stats[0]
# print(f"Memory Profiling: {top_block_stats.count} memory blocks: {top_block_stats.size / 1024:.1f} KiB")
# for line in top_block_stats.traceback.format():
# print(line)
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
print(f"DONE: {tm_.strftime('%a, %b %d %Y @ %H:%M:%S')}")
if with_plot:
pl_.show()
po_.MaximumIntensityProjectionZ(som_nfo['soma_w_ext_lmp'])
NADAL Morgane
committed
po_.MaximumIntensityProjectionZ(ext_nfo['lmp_ext'])
print('\n--- Graph extraction\n')
ext_map = skl_map_t.FromShapeMap(ext_nfo['lmp_ext'], store_widths=True, skeletonize=False) # do_post_thinning=True
# to remove pixel that are not breaking connectivity - FineMap in FromShapeMap
ext_skl_graph = skl_graph_t.FromSkeleton(ext_map) # here, using ext_nfo['lmp'] gives an error
NADAL Morgane
committed
# --- Some info about the skeleton graphs
print(
f"Obj map area={np_.count_nonzero(ext_map)}\n\n"
f"Validity={ext_skl_graph.is_valid}\n\n"
f"N nodes={ext_skl_graph.n_nodes}\n"
f"N edges={ext_skl_graph.n_edges}\n"
f"Highest degree={ext_skl_graph.highest_degree}/{ext_skl_graph.highest_degree_w_nodes}\n\n"
f"Length={ext_skl_graph.length}<-{ext_skl_graph.edge_lengths}\n"
f"Width=Hom.{ext_skl_graph.reduced_width()}/Het.{ext_skl_graph.heterogeneous_reduced_width()}<-{ext_skl_graph.edge_reduced_widths()}\n"
f"Area as WxL={ext_skl_graph.reduced_width() * ext_skl_graph.length}\n"
f"Area as WW Length={ext_skl_graph.ww_length}<-{ext_skl_graph.edge_ww_lengths}\n\n")
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"Elapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
NADAL Morgane
committed
ext_skl_graph.Plot(mode=plot_mode_e.SKL_Curve, w_directions=True, should_block=False)
ext_skl_graph.Plot(should_block=True)
pl_.show()
NADAL Morgane
committed
if with_plot:
pl_.show()
# Find the root of the {ext+conn} graphs.
# Roots are the nodes of degree 1 that are to be linked to the soma
print("\n--- Finding {ext+conn} graphs' root")
# nx_.draw_networkx(ext_skl_graph, block=True)
# pl_.show()
ext_skl_graph = ge_.FindGraphsRoot(somas, ext_skl_graph)
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
print(f"DONE: {tm_.strftime('%a, %b %d %Y @ %H:%M:%S')}")
# for node_id,node_id2, edge_nfo in ext_skl_graph.edges.data('as_edge_t'):
# ... if (ext_skl_graph.degree[node_id] == 1) or (ext_skl_graph.degree[node_id2] == 1):
# ... print(edge_nfo.sites)
# # Pour un soma donne
# # primary_extension_sites = tuple(set(zip(*extension.sites) for extension in soma.extensions)
# primary_extension_uids = tuple(extension.uid for extension in soma.extensions)
# for node_id,node_id2, edge_nfo in ext_skl_graph.edges.data('as_edge_t'):
# if (ext_skl_graph.degree[node_id] == 1) or (ext_skl_graph.degree[node_id2] == 1):
# ext_uid = np_.unique(ext_nfo['lmp'][edge_nfo.sites])[1]
# if ext_uid in primary_extension_uids:
# if ext_skl_graph.degree[node_id] == 1:
# root_node = node_id
# else:
# root_node = node_id2
# # print(edge_nfo.sites)
# # edge_sites = set(zip(*edge_nfo.sites))
# # intersections = map(in)