Newer
Older
# Copyright CNRS/Inria/UNS
# Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
import pandas as pd_
import numpy as np_
import matplotlib.pyplot as pl_
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import scipy as si_
import seaborn as sb_
def PCAOnDF(df: pd_.DataFrame(),
target: str,
targets: List[str],
colors: List[str],
save_name: str = None,
title: str = "",
plot_duration: bool = True,
save_in: str = None,
three_D: bool = False,
Perform 2D or 3D PCA on the CHO-DIO dataframe.
Save explained variance ratio as csv, plot and save the PCAs.
'''
# Separating the features from their conditions and durations
all_target = pd_.DataFrame(df.loc[:, [target]].values, columns=[target])
df_all = df.drop([target, "duration"], axis=1)
# Standardize the data
scaler = StandardScaler()
scaler.fit(df_all)
stand_df = scaler.transform(df_all)
# Create the PCA and fit the data
pca = PCA(n_components=2)
principal_components = pca.fit_transform(stand_df)
# Printing and saving the explained variance ratio
print(f"PCA explained variance ratio ({save_name}): ", pca.explained_variance_ratio_)
pca_exp_var_df = pd_.DataFrame(pca.explained_variance_ratio_, columns=["pca explained variance ration"])
pca_exp_var_df = pca_exp_var_df.rename(index={0: "principal component 1", 1: "principal component 2"})
pca_exp_var_df.to_csv(f"{save_in}\\pca_explained_variance_ratio_{save_name}.csv")
# Creating the principal component df
principal_df = pd_.DataFrame(data=principal_components, columns=['principal component 1', 'principal component 2'])
# Give the final df containing the principal component and their condition
final_df = pd_.concat([principal_df, all_target[target]], axis=1)
# Plot 2D
fig = pl_.figure(figsize=(8, 8))
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel(f'Principal Component 1 - ratio = {round(pca.explained_variance_ratio_[0],2)}', fontsize=15)
ax.set_ylabel(f'Principal Component 2 - ratio = {round(pca.explained_variance_ratio_[1],2)}', fontsize=15)
ax.set_title(f'2 component PCA{title}', fontsize=20)
for tgt, color in zip(targets, colors):
idx = final_df[target] == tgt
ax.scatter(final_df.loc[idx, 'principal component 1']
, final_df.loc[idx, 'principal component 2']
, c=color
, s=30)
ax.legend(targets)
ax.grid()
pl_.savefig(f"{save_in}\\PCA_{save_name}.png")
# Make separated plots for each duration of the experiments
fig = pl_.figure(figsize=(8, 8))
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel(f'Principal Component 1 - ratio = {round(pca.explained_variance_ratio_[0],2)}', fontsize=15)
ax.set_ylabel(f'Principal Component 2 - ratio = {round(pca.explained_variance_ratio_[1],2)}', fontsize=15)
ax.set_title(f'2 component PCA{title}', fontsize=20)
new_tgts = [["CHO", "1H"], ["CHO", "3H"], ["CHO", "6H"], ["DIO", "1H"], ["DIO", "3H"], ["DIO", "6H"]]
final_df = pd_.concat([df[["condition", "duration"]], principal_df], axis=1)
for tgt, color in zip(new_tgts, ["lavender", "royalblue", "navy", "lightcoral", "firebrick", "red"]):
new_df = final_df.loc[(final_df["condition"] == tgt[0]) & (final_df["duration"] == tgt[1])]
new_df = new_df.drop(["condition", "duration"], axis=1)
ax.scatter(new_df['principal component 1']
, new_df['principal component 2']
, c=color
, s=30)
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
ax.legend(new_tgts)
ax.grid()
if save_name is not None:
pl_.savefig(f"{save_in}\\PCA_duration_{save_name}.png")
if three_D:
# Create the 3D PCA and fit the data
pca3d = PCA(n_components=3)
principal_components3d = pca3d.fit_transform(stand_df)
# Print and Save the explained variance ratio
print(f"3D PCA explained variance ratio ({save_name}): ", pca3d.explained_variance_ratio_)
pca3d_exp_var_df = pd_.DataFrame(pca3d.explained_variance_ratio_, columns=["3d pca explained variance ration"])
pca3d_exp_var_df = pca3d_exp_var_df.rename(index={0: "principal component 1", 1: "principal component 2", 2: "principal component 3"})
pca3d_exp_var_df.to_csv(f"{save_in}\\three_d_pca_explained_variance_ratio_{save_name}.csv")
# Creating the principal component df
principal3d_df = pd_.DataFrame(data=principal_components3d,
columns=['principal component 1', 'principal component 2', 'principal component 3'])
# Give the final df containing the principal component and their condition
final3d_df = pd_.concat([principal3d_df, all_target[target]], axis=1)
# Plot
fig = pl_.figure(figsize=(8, 8))
ax = fig.add_subplot(111, projection='3d')
ax.set_xlabel(f'Principal Component 1 - ratio = {round(pca3d.explained_variance_ratio_[0],2)}', fontsize=15)
ax.set_ylabel(f'Principal Component 2 - ratio = {round(pca3d.explained_variance_ratio_[1],2)}', fontsize=15)
ax.set_zlabel(f'Principal Component 3 - ratio = {round(pca3d.explained_variance_ratio_[2],2)}', fontsize=15)
ax.set_title(f'3 component PCA{title}', fontsize=20)
for tgt, color in zip(targets, colors):
idx = final3d_df[target] == tgt
ax.scatter(final3d_df.loc[idx, 'principal component 1']
, final3d_df.loc[idx, 'principal component 2']
, final3d_df.loc[idx, 'principal component 3']
, c=color
, s=30)
pl_.savefig(f"{save_in}\\three_d_PCA_{save_name}.png")
if plot_duration:
fig = pl_.figure(figsize=(8, 8))
ax = fig.add_subplot(111, projection="3d")
ax.set_xlabel(f'Principal Component 1 - ratio = {round(pca3d.explained_variance_ratio_[0], 2)}', fontsize=15)
ax.set_ylabel(f'Principal Component 2 - ratio = {round(pca3d.explained_variance_ratio_[1],2)}', fontsize=15)
ax.set_zlabel(f'Principal Component 3 - ratio = {round(pca3d.explained_variance_ratio_[2],2)}', fontsize=15)
ax.set_title(f'3 component PCA{title}', fontsize=20)
final3d_df = pd_.concat([df[["condition", "duration"]], principal3d_df], axis=1)
for tgt, color in zip(new_tgts, ["lavender", "royalblue", "navy", "lightcoral", "firebrick", "red"]):
new3d_df = final3d_df.loc[(final_df["condition"] == tgt[0]) & (final3d_df["duration"] == tgt[1])]
new3d_df = new3d_df.drop(["condition", "duration"], axis=1)
ax.scatter(new3d_df['principal component 1']
, new3d_df['principal component 2']
, new3d_df['principal component 3']
, c=color
, s=30)
ax.legend(new_tgts)
ax.grid()
if save_name is not None:
pl_.savefig(f"{save_in}\\three_d_PCA_duration_{save_name}.png")
target: str,
plot_bar: bool = True,
rep_on_image: bool = False,
labeled_somas=None,
elbow: bool = False,
intracluster_var: bool = True,
) -> KMeans:
'''
Perform kmeans on the pandas dataframe. Can find the best number of cluster with elbow method,
find the intracluster variance, and represent the result on the initial images.
Plot barplots with percentage of each label for each condition.
# Separating the features from their conditions and durations
all_target = pd_.DataFrame(df.loc[:, [target]].values, columns=[target])
df2 = df.drop([target, "duration"], axis=1)
# Data standardization
scaler = StandardScaler()
stand_df = scaler.fit_transform(df2)
# Best number of clusters using Elbow method
if elbow:
wcss = [] # within cluster sum of errors(wcss)
for i in range(1, 24):
kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
kmeans.fit(stand_df)
wcss.append(kmeans.inertia_)
pl_.figure()
pl_.plot(range(1, 24), wcss)
pl_.plot(range(1, 24), wcss, 'bo')
pl_.title('Elbow Method')
pl_.xlabel('Number of clusters')
pl_.ylabel('WCSS')
pl_.show(block=True)
pl_.close()
NADAL Morgane
committed
# Kmeans with x clusters
for nb_cluster in nb_clusters:
kmeans = KMeans(n_clusters=nb_cluster, init='k-means++', max_iter=300, n_init=10, random_state=0)
kmeans.fit_predict(stand_df)
label_df = pd_.DataFrame(data=kmeans.labels_, columns=['label'])
lab_cond_df = pd_.concat([label_df, all_target[target]], axis=1)
if intracluster_var:
var = IntraClusterVariance(var_df, kmeans, nb_cluster, save_name)
var_df = pd_.DataFrame(var, columns=["intracluster variance"])
var_df = var_df.rename({cluster: f"label {cluster}" for cluster in range(nb_cluster)})
var_df.to_csv(f"{save_in}\\intracluster_variance_kmeans_{save_name}_k={nb_cluster}.csv")
# TODO Intersection of ellipsoids of the covariance matrices
# - ellipsoid equation: (x-mean)(1/Mcov)(x-mean).T <= 1
if duration:
fig = pl_.figure(figsize=(16, 8))
ax = fig.add_subplot(1, 1, 1)
(lab_cond_df.groupby("condition")["label"].value_counts(normalize=True).mul(100).rename(
"Percentage (%)").reset_index().pipe((sb_.barplot, "data"), x="condition", y="Percentage (%)",
hue="label", palette=sb_.color_palette("deep", n_colors=nb_cluster)))
ax.set_title(f'Distribution of the clustering labels according to conditions{title}_k={nb_cluster}', fontsize=11)
ax.grid()
if save_name is not None:
pl_.savefig(f"{save_in}\\Hist_Clustering_{save_name}_k={nb_cluster}.png")
# pl_.show(block=True)
# pl_.close()
else:
fig = pl_.figure(figsize=(16, 8))
ax= fig.add_subplot(1, 1, 1)
(lab_cond_df.groupby("condition")["label"].value_counts(normalize=True).mul(100).rename(
"Percentage (%)").reset_index().pipe((sb_.barplot, "data"), x="condition", y="Percentage (%)",
hue="label", palette=sb_.color_palette("deep", n_colors=nb_cluster)))
ax.set_ylim(0, 100)
ax.grid()
ax.set_title(f'Distribution of the clustering labels according to conditions{title}_k={nb_cluster}', fontsize=11)
pl_.savefig(f"{save_in}\\Hist_Clustering_{save_name}_k={nb_cluster}.png")
# pl_.show(block=True)
# pl_.close()
lab_cond_df2 = pd_.concat((lab_cond_df, df[["duration"]]), axis=1)
for dur in df["duration"].unique():
dur_df = lab_cond_df2.loc[lab_cond_df2["duration"] == dur]
fig = pl_.figure(figsize=(16, 8))
ax = fig.add_subplot(1, 1, 1)
(dur_df.groupby("condition")["label"].value_counts(normalize=True).mul(100).rename(
"Percentage (%)").reset_index().pipe((sb_.barplot, "data"), x="condition", y="Percentage (%)",
hue="label", palette=sb_.color_palette("deep", n_colors=nb_cluster)))
ax.set_ylim(0, 100)
ax.grid()
ax.set_title(f'Distribution of the clustering labels according to conditions{title}_k={nb_cluster} - duration = {dur}', fontsize=11)
pl_.savefig(f"{save_in}\\Hist_Clustering_{save_name}_dur_{dur}_k={nb_cluster}.png")
# pl_.show(block=True)
# pl_.close()
if save_name is not None:
pl_.savefig(f"{save_in}\\Hist_duration_Clustering_{save_name}_k={nb_cluster}.png")
print(f"Saved in {save_in}")
# pl_.show(block=True)
# pl_.close()
NADAL Morgane
committed
RepresentationOnImages(labeled_somas, kmeans, nb_cluster)
return kmeans
def IntraClusterVariance(df: pd_.DataFrame(), kmeans: KMeans(), nb_cluster: int, save_name: str = "") -> list:
'''
Return the intracluster variance of a given cluster found by kmeans.
'''
var = []
for cluster in range(nb_cluster):
soma_cluster = [indx for indx, value in enumerate(kmeans.labels_) if value == cluster]
mean_cluster = np_.average([df.iloc[row, :] for row in soma_cluster], axis=0) # TODO .cluster_centers_
variance = sum([np_.linalg.norm(df.iloc[row, :] - mean_cluster) ** 2 for row in soma_cluster]) / (len(soma_cluster) - 1)
var.append(variance)
print(f"Intracluster variance for {nb_cluster} clusters ({save_name}) :", var)
return var
NADAL Morgane
committed
def RepresentationOnImages(labeled_somas, kmeans, nb_cluster):
'''
Represent the result of kmeans on labeled image. IN DVPT. Only available for a kmean intra-image.
'''
NADAL Morgane
committed
clustered_somas = labeled_somas.copy()
clustered_somas = np_.amax(clustered_somas, axis=0)
for indx, value in enumerate(kmeans.labels_):
for indx_axe, axe in enumerate(clustered_somas):
for indx_pixel, pixel in enumerate(axe):
if pixel == indx + 1:
clustered_somas[indx_axe][indx_pixel] = value + 1
pl_.imshow(clustered_somas, cmap="tab20")
pl_.title(f"n cluster = {nb_cluster}")
pl_.show(block=True)
pl_.close()
def FeaturesStatistics(df: pd_.DataFrame(),
save_in: str = None,
title: str = "",
describe: bool = True,
heatmap: bool = True,
drop_feat: bool = True,
distribution: bool = True,
stat_test: bool = True,
decision_tree: bool = True,
'''
Return the statistics allowing the user to choose the most relevant features to feed ML algorithms for ex.
Statistical description, correlation heatmap, dropping correlated features or features with little difference between the two conditions,
Plotting features distribution and boxplots, performing Kolmogorov-Smirnov two-sample test and Wilcoxon signed-rank two-sample test.
Can draw a decision tree.
# Overview of the basic stats on each columns of df
if describe:
description = df.describe()
if save_in is not None:
description.to_csv(f"{save_in}\\df_stat_description.csv")
# Data formatting
df_scalar = df.drop(["duration", "condition"], axis=1)
df_cond = df.drop(["duration"], axis=1)
df_groupby_dur = df.groupby("duration")
# Compute the correlation matrix
corr_matrix = df_scalar.corr().abs()
if heatmap:
# Plot heat map with correlation matrix btw features
print("Heat map with correlation matrix btw features")
# Generate a mask for the upper triangle
mask = np_.triu(np_.ones_like(corr_matrix, dtype=np_.bool))
# Set up the figure
fig, ax = pl_.subplots(figsize=(13, 9))
# Generate a custom diverging colormap
cmap = sb_.diverging_palette(220, 10, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
sb_.heatmap(corr_matrix, mask=mask, cmap=cmap, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}, xticklabels=False)
ax.set_title(f'Features correlation heat map{title}', fontsize=20)
pl_.savefig(f"{save_in}\\Features correlation heat map{title}.png")
# Create dictionaries to store the statistics and p-values
dict_ks = {}
dict_wx = {}
dict_ks_dur = {}
dict_wx_dur = {}
for column in df_scalar.columns:
# For each feature, perform a statistical test to know if the feature distribution or median is different btw CHO and DIO conditions
cond_col_df = pd_.concat((df_scalar[column], df_cond["condition"]), axis=1)
# Separate the conditions
CHO = cond_col_df.loc[cond_col_df['condition'] == "CHO"]
CHO = np_.asarray(CHO[column])
DIO = cond_col_df.loc[cond_col_df['condition'] == "DIO"]
DIO = np_.asarray(DIO[column])
# Compare distribution between conditions (goodness of fit)
ks = si_.stats.ks_2samp(CHO, DIO)
dict_ks[column] = ks
# Compare median between conditions
wx = si_.stats.ranksums(CHO, DIO)
dict_wx[column] = wx
# Plot the p-values
fig = pl_.figure(constrained_layout=False, figsize=(15,8))
gs = fig.add_gridspec(ncols=2, nrows=1)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
#
ax1.set_title(f"Kolmogorov-Smirnov p-value btw conditions - {column}", fontsize=13, pad=20)
ax1.grid()
ax1.set_xlabel("Duration")
ax1.set_yscale("log")
ax1.set_ylabel("p-value")
#
ax2.set_title(f"Wilcoxon signed-rank p-value btw conditions - {column}", fontsize=13, pad=20)
ax2.grid()
ax2.set_xlabel("Duration")
ax2.set_yscale("log")
ax2.set_ylabel("p-value")
# Do the same thing than above but separate durations between conditions
for duration, values in df_groupby_dur:
if duration not in dict_ks_dur:
dict_ks_dur[duration] = {}
dict_wx_dur[duration] = {}
duration_df = values.drop(["duration"], axis=1)
CHO_ = duration_df.loc[duration_df['condition'] == "CHO"]
DIO_ = duration_df.loc[duration_df['condition'] == "DIO"]
CHO_ = CHO_.drop(["condition"], axis=1)
DIO_ = DIO_.drop(["condition"], axis=1)
CHO_ = np_.asarray(CHO_[column])
DIO_ = np_.asarray(DIO_[column])
# Compare distribution
ks2 = si_.stats.ks_2samp(CHO_, DIO_)
dict_ks_dur[duration][column] = ks2
# Compare median
wx2 = si_.stats.ranksums(CHO_, DIO_)
dict_wx_dur[duration][column] = wx2
ax1.plot([f"{duration}" for duration, _ in df_groupby_dur], [dict_ks_dur[duration][column][1] for duration, _ in df_groupby_dur], "g")
ax1.plot([f"{duration}" for duration, _ in df_groupby_dur], [dict_ks_dur[duration][column][1] for duration, _ in df_groupby_dur], 'ko')
ax2.plot([f"{duration}" for duration, _ in df_groupby_dur], [dict_wx_dur[duration][column][1] for duration, _ in df_groupby_dur], "y")
ax2.plot([f"{duration}" for duration, _ in df_groupby_dur], [dict_wx_dur[duration][column][1] for duration, _ in df_groupby_dur], 'ko')
pl_.tight_layout()
if save_in:
pl_.savefig(f"{save_in}\\p_values_duration_{column}")
pl_.close()
# Reformat the data to save it as csv
df_ks = pd_.DataFrame.from_dict(data=dict_ks)
df_ks = df_ks.rename(index={0: "Kolmogorov-Smirnov statistic", 1: "Kolmogorov-Smirnov p-value"})
df_wx = pd_.DataFrame.from_dict(data=dict_wx)
df_wx = df_wx.rename(index={0: "Wilcoxon statistic", 1: "Wilcoxon p-value"})
df_ks_dur = pd_.DataFrame()
df_wx_dur = pd_.DataFrame()
for key in dict_ks_dur.keys():
df_ks_dur = pd_.concat((df_ks_dur, pd_.DataFrame.from_dict(data=dict_ks_dur[key])))
df_ks_dur = df_ks_dur.rename(index={0: f"{key} - Kolmogorov-Smirnov statistic", 1: f"{key} - Kolmogorov-Smirnov p-value"})
df_wx_dur = pd_.concat((df_wx_dur, pd_.DataFrame.from_dict(data=dict_wx_dur[key])))
df_wx_dur = df_wx_dur.rename(index={0: f"{key} - Wilcoxon statistic", 1: f"{key} - Wilcoxon p-value"})
stat_tests_df1 = pd_.concat((df_ks, df_wx)) # KS and Wx all durations
stat_tests_df2 = pd_.concat((df_ks_dur, df_wx_dur)) # KS and Wx for each duration
if save_in:
stat_tests_df1.to_csv(f"{save_in}\\stat_test_KS_wilcoxon_all.csv")
stat_tests_df2.to_csv(f"{save_in}\\stat_test_KS_wilcoxon_for_each_duration.csv")
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
if drop_feat:
# Drop highly correlated features
print("Drop highly correlated features")
# Select upper triangle of correlation matrix
upper = corr_matrix.where(np_.triu(np_.ones(corr_matrix.shape), k=1).astype(np_.bool))
# Find index of feature columns with correlation greater than 0.9
to_drop = [column for column in upper.columns if any(upper[column] > 0.9)]
# Drop features
drop_HCF_df = df_scalar.drop(df[to_drop], axis=1)
# Drop column with null variance
drop_HCF_df = drop_HCF_df.loc[:, drop_HCF_df.var() != 0.0]
if stat_test:
# drop non significant features (distribution and mean not different btw CHO and DIO)
drop_HCF_df_6H = drop_HCF_df.copy()
# based on all durations;
to_drop =[column for column in drop_HCF_df.columns if (stat_tests_df1.loc["Kolmogorov-Smirnov p-value", column] > 1.0e-2) and (stat_tests_df1.loc["Wilcoxon p-value", column] > 1.0e-2)]
drop_HCF_df = drop_HCF_df.drop(drop_HCF_df[to_drop], axis=1)
# only based on 6H duration;
to_drop_6H =[column for column in drop_HCF_df_6H.columns if (stat_tests_df2.loc["6H - Kolmogorov-Smirnov p-value", column] > 1.0e-3) and (stat_tests_df2.loc["6H - Wilcoxon p-value", column] > 1.0e-3)]
drop_HCF_df_6H = drop_HCF_df_6H.drop(drop_HCF_df_6H[to_drop_6H], axis=1)
drop_HCF_df_6H = pd_.concat((df[["condition", "duration"]], drop_HCF_df_6H), axis=1)
if save_in:
drop_HCF_df_6H.to_csv(f"{save_in}\\df_drop_highly_corr_feat_6H.csv")
print(f"Selection of features with distribution and median of CHO vs DIO different in: {save_in}")
# Add the condition and duration
drop_HCF_df = pd_.concat((df[["condition", "duration"]], drop_HCF_df), axis=1)
if save_in:
drop_HCF_df.to_csv(f"{save_in}\\df_drop_highly_corr_feat.csv")
print(f"Selection of low correlated features in: {save_in}")
# Statistics for each features
if distribution:
for column in df_scalar.columns:
cond_col_df = pd_.concat((df_scalar[column], df_cond["condition"]), axis=1)
fig = pl_.figure(constrained_layout=False)
gs = fig.add_gridspec(ncols=2, nrows=1)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
# Plot a histogram and kernel density estimate
print(f"Plot a histogram and kernel density estimate for feature {column}")
CHO = cond_col_df.loc[cond_col_df['condition'] == "CHO"]
DIO = cond_col_df.loc[cond_col_df['condition'] == "DIO"]
sb_.distplot(CHO[[column]], color="b", ax=ax1)
sb_.distplot(DIO[[column]], color="r", ax=ax1)
# Draw a boxplot
print(f"Plot a boxplot for feature {column}")
sb_.boxplot(data=df_cond, x="condition", y=column, hue="condition", palette=["b", "r"], ax=ax2)
ax1.set_title(f'{column} distribution{title}', fontsize=11)
ax2.set_title(f'{column} boxplot{title}', fontsize=11)
pl_.tight_layout()
if save_in is not None:
pl_.savefig(f"{save_in}\\feat_distrib_{column}.png")
pl_.close()
# Decision tree
if decision_tree:
# Test btw CHO and DIO
dt_df = df.drop(["condition", "duration"], axis=1)
clf = tree.DecisionTreeClassifier(max_depth=4)
clf = clf.fit(dt_df, df["condition"])
fig = pl_.figure(figsize=(150, 65))
tree.plot_tree(clf, feature_names=df.columns, class_names=["CHO", "DIO"], filled=True, rounded=True, fontsize=60)
fig.suptitle(f"Decision tree all durations", fontsize=120)
if save_in:
pl_.savefig(f"{save_in}\\Decision_tree_all_durations_{title}.png")
pl_.close()
# Test btw CHO and DIO depending on duration
for duration, values in df_groupby_dur:
duration_df = values.drop(["duration", "condition"], axis=1)
clf = tree.DecisionTreeClassifier(max_depth=3)
clf = clf.fit(duration_df, values["condition"])
fig = pl_.figure(figsize=(30, 16))
tree.plot_tree(clf, feature_names=df.columns, class_names=["CHO", "DIO"], filled=True, rounded=True, fontsize=8)
fig.suptitle(f"Decision tree {duration}", fontsize=16)
if save_in:
pl_.savefig(f"{save_in}\\Decision_tree_{duration}_{title}.png")
pl_.close()
## If need to concatenate files:
# all_filenames = [i for i in glob.glob('*.{}'.format("csv"))]
# print(all_filenames)
# df = pd_.concat([pd_.read_csv(f, index_col=0) for f in all_filenames])
# df.to_csv(".\combined_features.csv")
## If use labeled somas:
# labeled_somas = np_.load("path.npy")
# df = pd_.read_csv(".\combined_features.csv", index_col=0)
## Parameters
path = sy_.argv[1]
save_in = sy_.argv[2]
## DF cleaning
df0 = pd_.read_csv(f"{path}\\features.csv",
# index_col=0,
)
df = df0.drop(["Unnamed: 0"], axis=1)
## Statistical analysis
# For the moment drop the columns with non scalar values, and un-useful values
# - TO BE CHANGED TODO (use distance metrics such as bhattacharyya coef, etc)
df = df.drop(["soma uid",
"spherical_angles_eva", "spherical_angles_evb",
"hist_lengths", "hist_lengths_P", "hist_lengths_S",
"hist_curvature", "hist_curvature_P", "hist_curvature_S"],
axis=1)
df = df.dropna(axis=0, how="any")
# -- PCA with all the features
print("\nALL FEATURES\n")
# Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
PCAOnDF(df,
target="condition",
targets=["CHO", "DIO"],
colors=["b", "r"],
save_name="all_features",
save_in=save_in,
three_D=True,
)
# Between the two conditions, for each duration (2 conditions, 3 durations)
groupby_duration = df.groupby("duration")
for duration, values in groupby_duration:
## duration: str, values: pd_.DataFrame()
PCAOnDF(values,
target="condition",
targets=["CHO", "DIO"],
colors=["b", "r"],
save_name=f"{duration}_features",
save_in=save_in,
title=f" - {duration} Sample",
plot_duration=False,
three_D=True,
)
# -- K-means with all the features (2 conditions)
# Test for multiple glial populations
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
# Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
kmeans = KmeansOnDF(df,
target="condition",
nb_clusters=(2, 3, 4, 5),
elbow=True,
intracluster_var=True,
plot_bar=True,
save_name="all_features_multiple_pop",
save_in=save_in,
)
# Between the two conditions, for each duration (2 conditions, 3 durations)
groupby_duration = df.groupby("duration")
for duration, values in groupby_duration:
kmeans = KmeansOnDF(values,
target="condition",
nb_clusters=(2, 3, 4, 5),
elbow=False,
intracluster_var=True,
plot_bar=True,
save_name=f"{duration}_features_multiple_pop",
title=f" - {duration} Sample",
duration=True,
save_in=save_in,
)
# -- Various plots to analyse the data and find discriminant features by statistical analysis
print("\nFEATURE SELECTION\n")
FeaturesStatistics(df,
save_in=save_in,
describe=True,
heatmap=True,
distribution=True,
stat_test=True,
drop_feat=True,
decision_tree=False,
)
## TODO: Enter selected features here
# selected_features = []
# selected_df = df[selected_features]
## TODO Or use the csv with dropped features
selected_df = pd_.read_csv(f"{save_in}\\df_drop_highly_corr_feat.csv")
# selected_df = pd_.read_csv(f"{save_in}\\df_drop_highly_corr_feat_6H.csv")
## If an error raises, only run the part until FeaturesStatistics included, and then run the last part.
# if other columns need to be dropped:
try:
to_drop = ["Unnamed: 0", "min_curvature"]
selected_df = selected_df.drop(to_drop, axis=1)
except:
selected_df = selected_df.drop(["Unnamed: 0"], axis=1)
# -- PCA with all the features
print("\nSELECTED FEATURES\n")
# Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
PCAOnDF(df,
target="condition",
targets=["CHO", "DIO"],
colors=["b", "r"],
save_name="all_selected_features",
save_in=save_in,
three_D=True,
)
# Between the two conditions, for each duration (2 conditions, 3 durations)
groupby_duration = df.groupby("duration")
for duration, values in groupby_duration:
# duration: str, values: pd_.DataFrame()
PCAOnDF(values,
target="condition",
targets=["CHO", "DIO"],
colors=["b", "r"],
save_name=f"{duration}_selected_features",
save_in=save_in,
title=f" - {duration} Sample - selected features",
plot_duration=False,
three_D=True,
)
# -- K-means with all the features (2 conditions)
# Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
kmeans = KmeansOnDF(df,
target="condition",
nb_clusters=(2,3,4,5),
elbow=False,
intracluster_var=True,
plot_bar=True,
save_name="all_selected_features",
save_in=save_in,
)
# Between the two conditions, for each duration (2 conditions, 3 durations)
groupby_duration = df.groupby("duration")
for duration, values in groupby_duration:
kmeans = KmeansOnDF(values,
target="condition",
nb_clusters=(2,3,4,5),
elbow=False,
intracluster_var=True,
plot_bar=True,
save_name=f"{duration}_selected_features",
save_in=save_in,
title=f" - {duration} Sample - selected features",
duration=True,
)
## TODO: Random forests ?