Mentions légales du service

Skip to content
Snippets Groups Projects
Commit e1cccbf8 authored by NADAL Morgane's avatar NADAL Morgane
Browse files

dvpt of algo helping feature selection

parent 9046d6ce
No related branches found
No related tags found
No related merge requests found
......@@ -32,13 +32,14 @@
import pandas as pd_
import numpy as np_
import matplotlib.pyplot as pl_
import matplotlib.gridspec as gs_
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import scipy as si_
import seaborn as sb_
import os
import glob
import sys as sy_
from typing import List
......@@ -195,29 +196,133 @@ def RepresentationOnImages(labeled_somas, kmeans, nb_cluster):
pl_.close()
def FeaturesStatistics(df):
def FeaturesStatistics(df: pd_.DataFrame(),
save_in: str = None,
title: str = "",
):
'''
Return the statistics allowing the user to choose the most relevant features to feed ML algorithms for ex.
'''
#
# Overview of the basic stats on each columns of df
df.describe()
description = df.describe()
if save_in is not None:
description.to_csv(f"{save_in}\\df_stat_description.csv")
df_scalar = df.drop(["duration", "condition"], axis=1)
df_cond = df.drop(["duration"], axis=1)
df_groupby_cond = df.drop("duration", axis=1).groupby("condition")
df_groupby_dur = df.groupby("duration")
condition = pd_.DataFrame(df.loc[:, ["condition"]].values, columns=["condition"])
# Overview of features distribution and correlation
sb_.pairplot(df, kind='reg')
sb_.pairplot(df, kind='reg', hue='Condition')
# Statistics for each features
for column in df.columns:
print(column)
hist = df[column].hist(bins=20)
pl_.title(f"{column}")
pl_.savefig(f"D:\\MorganeNadal\\M2 report\\kmeans24\\feat_distrib_{column}.png")
## /!\ if too many features, error in seaborn display
## Even by splitting the data : too intense!
# Plot heat map with correlation matrix btw features
# Compute the correlation matrix
print("Heat map with correlation matrix btw features")
corr_matrix = df_scalar.corr().abs()
# Generate a mask for the upper triangle
mask = np_.triu(np_.ones_like(corr_matrix, dtype=np_.bool))
# Set up the figure
fig, ax = pl_.subplots(figsize=(13, 9))
# Generate a custom diverging colormap
cmap = sb_.diverging_palette(220, 10, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
sb_.heatmap(corr_matrix, mask=mask, cmap=cmap, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}, xticklabels=False)
ax.set_title(f'Features correlation heat map{title}', fontsize=20)
if save_in is not None:
pl_.savefig(f"{save_in}\\Features correlation heat map{title}.png")
pl_.close()
# Drop highly correlated features
print("Drop highly correlated features")
# Select upper triangle of correlation matrix
upper = corr_matrix.where(np_.triu(np_.ones(corr_matrix.shape), k=1).astype(np_.bool))
# Find index of feature columns with correlation greater than 0.9
to_drop = [column for column in upper.columns if any(upper[column] > 0.9)]
# Drop features
drop_HCF_df = df_scalar.drop(df[to_drop], axis=1)
if save_in:
drop_HCF_df.to_csv(f"{save_in}\\df_drop_highly_corr_feat.csv")
print(f"Selection of low correlated features in: {save_in}\\df_drop_highly_corr_feat.csv")
# Statistics for each features
dict_ks = {}
dict_wx = {}
dict_ks_dur = {}
dict_wx_dur = {}
for column in df_scalar.columns:
cond_col_df = pd_.concat((df_scalar[column], df_cond["condition"]), axis=1)
fig = pl_.figure(constrained_layout=False)
gs = fig.add_gridspec(ncols=2, nrows=1)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
# Plot a histogram and kernel density estimate
print(f"Plot a histogram and kernel density estimate for feature {column}")
CHO = cond_col_df.loc[cond_col_df['condition'] == "CHO"]
DIO = cond_col_df.loc[cond_col_df['condition'] == "DIO"]
sb_.distplot(CHO[[column]], color="b", ax=ax1)
sb_.distplot(DIO[[column]], color="r", ax=ax1)
# Draw a boxplot
print(f"Plot a boxplot for feature {column}")
sb_.boxplot(data=df_cond, x="condition", y=column, hue="condition", palette=["b", "r"], ax=ax2)
ax1.set_title(f'{column} distribution{title}', fontsize=11)
ax2.set_title(f'{column} boxplot{title}', fontsize=11)
pl_.tight_layout()
if save_in is not None:
pl_.savefig(f"{save_in}\\feat_distrib_{column}.png")
pl_.close()
# Compare distribution between conditions (goodness of fit)
print(f"Kolmogorov-Smirnov between conditions")
ks = si_.stats.kstest(CHO[[column]], DIO[[column]])
dict_ks[column] = ks
# Compare median between conditions
print(f"Wilcoxon signed-rank test between conditions")
wx = si_.stats.wilcoxon(CHO[[column]], DIO[[column]])
dict_wx[column] = wx
# For each duration between conditions
for duration, values in df_groupby_dur:
dict_ks_dur[duration] = {}
dict_wx_dur[duration] = {}
duration_df = values.drop(["duration"])
CHO_ = duration_df.loc[duration_df['condition'] == "CHO"]
DIO_ = duration_df.loc[duration_df['condition'] == "DIO"]
# Compare distribution
print(f"Kolmogorov-Smirnov between conditions")
ks2 = si_.stats.kstest(CHO[[column]], DIO[[column]])
dict_ks_dur[duration][column] = ks2
# Compare median
print(f"Wilcoxon signed-rank test between conditions")
wx2 = si_.stats.kstest(CHO[[column]], DIO[[column]])
dict_wx_dur[duration][column] = wx2
df_ks = pd_.DataFrame.from_dict()
df_wx = pd_.DataFrame.from_dict()
df_ks_dur = pd_.DataFrame.from_dict()
df_wx_dur = pd_.DataFrame.from_dict()
stat_tests_df = pd_.concatenate((df_ks, df_wx, df_ks_dur, df_wx_dur))
if __name__ == "__main__":
#
# os.chdir("D:\\MorganeNadal\\2_RESULTS\\Results_wo_erosion")
# os.chdir("path")
## If need to concatenate files:
# all_filenames = [i for i in glob.glob('*.{}'.format("csv"))]
......@@ -226,10 +331,13 @@ if __name__ == "__main__":
# df.to_csv(".\combined_features.csv")
## If use labeled somas:
# labeled_somas = np_.load("D:\\MorganeNadal\\Results\\labeled_somas.npy")
# labeled_somas = np_.load("path.npy")
# df = pd_.read_csv(".\combined_features.csv", index_col=0)
df0 = pd_.read_csv("D:\\MorganeNadal\\2_RESULTS\\Results_wo_erosion\\all_features.csv",
# path = sy_.argv[1]
path = "D:\\MorganeNadal\\2_RESULTS\\Results_wo_erosion"
df0 = pd_.read_csv(path,
# index_col=0,
)
df = df0.drop(["Unnamed: 0"], axis=1)
......@@ -295,9 +403,15 @@ if __name__ == "__main__":
# title=f" - {duration} Sample",
# )
## -- Select Discriminant features by statistical analysis
# TODO filtered_df = SelectFeatures(concatenated_features_df)
## -- Various plots to analyse the data and find discriminant features by statistical analysis
FeaturesStatistics(df,
save_in="D:\\MorganeNadal\\2_RESULTS\\Results_wo_erosion\\Features_analysis",
)
## TODO: Enter selected features here
# selected_features = []
# selected_df = df[selected_features]
#
# # -- PCA with selected features
# # Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# df_all = df.drop(["duration"], axis=1)
......
......@@ -660,79 +660,9 @@ if __name__ == '__main__':
else:
concatenated_features_df.to_csv(f"{save_csv}\\features.csv")
# --- TODO Clustering with this df and module features_analysis.py
# if statistical_analysis:
## For the moment drop the columns with non scalar values, and un-useful values
## - TO BE CHANGED (use distance metrics such as bhattacharyya coef, etc)
# df = concatenated_features_df.drop(["soma uid",
# "spherical_angles_eva",
# "spherical_angles_evb",
# "hist_lengths",
# "hist_lengths_P",
# "hist_lengths_S",
# "hist_curvature",
# "hist_curvature_P",
# "hist_curvature_S"],
# axis=1)
## -- PCA with all the features
## Separating the features from their conditions and durations
# all_target = concatenated_features_df.loc[:, ['Condition']].values
# all_features_df = concatenated_features_df.drop(["Duration"], axis=1)
## Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# TODO pca = fa_.PCAOnDF(concatenated_features_df)
## Between the two conditions, for each duration (2 conditions, 3 durations)
# groupby_duration = concatenated_features_df.groupby("Duration")
# for duration, values in groupby_duration:
##TODO find the condition to print it on PCA
# print(duration)
# duration_features_df = concatenated_features_df.drop(["Duration"], axis=1)
# pca = fa_.PCAOnDF(values)
## -- K-means with all the features (2 conditions)
## Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# kmeans = fa_.KmeansOnDF(concatenated_features_df, nb_clusters=(2,), elbow=True, intracluster_var=True)
## Between the two conditions, for each duration (2 conditions, 3 durations)
# for duration, values in groupby_duration:
# kmeans = fa_.KmeansOnDF(values, nb_clusters=(2,), elbow=True, intracluster_var=True)
## -- Select Discriminant features by statistical analysis
# TODO filtered_df = SelectFeatures(concatenated_features_df)
## -- PCA with all the features with the cluster as label
## Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# TODO pca = fa_.PCAOnDF(concatenated_features_df)
## Between the two conditions, for each duration (2 conditions, 3 durations)
# for duration, values in groupby_duration:
# pca = fa_.PCAOnDF(values)
## -- Select Discriminant features by statistical analysis
# TODO filtered_df = SelectFeatures(concatenated_features_df)
## -- PCA with selected features
## Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# TODO pca = fa_.PCAOnDF(filtered_df)
## Between the two conditions, for each duration (2 conditions, 3 durations)
# filtered_groupby_duration = filtered_df.groupby("Duration")
# for duration, values in filtered_groupby_duration:
# pca = fa_.PCAOnDF(values)
## -- K-means with selected features
## Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# filtered_kmeans = fa_.KmeansOnDF(filtered_df, nb_clusters=(2,), elbow=True, intracluster_var=True)
## Between the two conditions, for each duration (2 conditions, 3 durations)
# for duration, values in filtered_groupby_duration:
# filtered_kmeans = fa_.KmeansOnDF(values, nb_clusters=(2,), elbow=True, intracluster_var=True)
# Clustering with this df and module features_analysis.py
if statistical_analysis:
os_.system(f"feature_analysis.py {save_csv}\\features.csv")
else:
raise ImportError("Not a valid data path!")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment