# Copyright CNRS/Inria/UNS # Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020) # # eric.debreuve@cnrs.fr # # This software is governed by the CeCILL license under French law and # abiding by the rules of distribution of free software. You can use, # modify and/ or redistribute the software under the terms of the CeCILL # license as circulated by CEA, CNRS and INRIA at the following URL # "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license and that you accept its terms. import pandas as pd_ import numpy as np_ import matplotlib.pyplot as pl_ import matplotlib.gridspec as gs_ from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn import tree import scipy as si_ import seaborn as sb_ import sys as sy_ from typing import List def PCAOnDF(df: pd_.DataFrame(), target: str, targets: List[str], colors: List[str], save_name: str = None, title: str = "", plot_duration: bool = True, save_in: str = None, three_D: bool = False, ) -> list: ''' Perform 2D or 3D PCA on the CHO-DIO dataframe. Save explained variance ratio as csv, plot and save the PCAs. ''' # Separating the features from their conditions and durations all_target = pd_.DataFrame(df.loc[:, [target]].values, columns=[target]) df_all = df.drop([target, "duration"], axis=1) # Standardize the data scaler = StandardScaler() scaler.fit(df_all) stand_df = scaler.transform(df_all) # Create the PCA and fit the data pca = PCA(n_components=2) principal_components = pca.fit_transform(stand_df) # Printing and saving the explained variance ratio print(f"PCA explained variance ratio ({save_name}): ", pca.explained_variance_ratio_) pca_exp_var_df = pd_.DataFrame(pca.explained_variance_ratio_, columns=["pca explained variance ration"]) pca_exp_var_df = pca_exp_var_df.rename(index={0: "principal component 1", 1: "principal component 2"}) pca_exp_var_df.to_csv(f"{save_in}\\pca_explained_variance_ratio_{save_name}.csv") # Creating the principal component df principal_df = pd_.DataFrame(data=principal_components, columns=['principal component 1', 'principal component 2']) # Give the final df containing the principal component and their condition final_df = pd_.concat([principal_df, all_target[target]], axis=1) # Plot 2D fig = pl_.figure(figsize=(8, 8)) ax = fig.add_subplot(1, 1, 1) ax.set_xlabel(f'Principal Component 1 - ratio = {round(pca.explained_variance_ratio_[0],2)}', fontsize=15) ax.set_ylabel(f'Principal Component 2 - ratio = {round(pca.explained_variance_ratio_[1],2)}', fontsize=15) ax.set_title(f'2 component PCA{title}', fontsize=20) for tgt, color in zip(targets, colors): idx = final_df[target] == tgt ax.scatter(final_df.loc[idx, 'principal component 1'] , final_df.loc[idx, 'principal component 2'] , c=color , s=30) ax.legend(targets) ax.grid() if save_name is not None: pl_.savefig(f"{save_in}\\PCA_{save_name}.png") if plot_duration: # Make separated plots for each duration of the experiments fig = pl_.figure(figsize=(8, 8)) ax = fig.add_subplot(1, 1, 1) ax.set_xlabel(f'Principal Component 1 - ratio = {round(pca.explained_variance_ratio_[0],2)}', fontsize=15) ax.set_ylabel(f'Principal Component 2 - ratio = {round(pca.explained_variance_ratio_[1],2)}', fontsize=15) ax.set_title(f'2 component PCA{title}', fontsize=20) new_tgts = [["CHO", "1H"], ["CHO", "3H"], ["CHO", "6H"], ["DIO", "1H"], ["DIO", "3H"], ["DIO", "6H"]] final_df = pd_.concat([df[["condition", "duration"]], principal_df], axis=1) for tgt, color in zip(new_tgts, ["lavender", "royalblue", "navy", "lightcoral", "firebrick", "red"]): new_df = final_df.loc[(final_df["condition"] == tgt[0]) & (final_df["duration"] == tgt[1])] new_df = new_df.drop(["condition", "duration"], axis=1) ax.scatter(new_df['principal component 1'] , new_df['principal component 2'] , c=color , s=30) ax.legend(new_tgts) ax.grid() if save_name is not None: pl_.savefig(f"{save_in}\\PCA_duration_{save_name}.png") if three_D: # Create the 3D PCA and fit the data pca3d = PCA(n_components=3) principal_components3d = pca3d.fit_transform(stand_df) # Print and Save the explained variance ratio print(f"3D PCA explained variance ratio ({save_name}): ", pca3d.explained_variance_ratio_) pca3d_exp_var_df = pd_.DataFrame(pca3d.explained_variance_ratio_, columns=["3d pca explained variance ration"]) pca3d_exp_var_df = pca3d_exp_var_df.rename(index={0: "principal component 1", 1: "principal component 2", 2: "principal component 3"}) pca3d_exp_var_df.to_csv(f"{save_in}\\three_d_pca_explained_variance_ratio_{save_name}.csv") # Creating the principal component df principal3d_df = pd_.DataFrame(data=principal_components3d, columns=['principal component 1', 'principal component 2', 'principal component 3']) # Give the final df containing the principal component and their condition final3d_df = pd_.concat([principal3d_df, all_target[target]], axis=1) # Plot fig = pl_.figure(figsize=(8, 8)) ax = fig.add_subplot(111, projection='3d') ax.set_xlabel(f'Principal Component 1 - ratio = {round(pca3d.explained_variance_ratio_[0],2)}', fontsize=15) ax.set_ylabel(f'Principal Component 2 - ratio = {round(pca3d.explained_variance_ratio_[1],2)}', fontsize=15) ax.set_zlabel(f'Principal Component 3 - ratio = {round(pca3d.explained_variance_ratio_[2],2)}', fontsize=15) ax.set_title(f'3 component PCA{title}', fontsize=20) for tgt, color in zip(targets, colors): idx = final3d_df[target] == tgt ax.scatter(final3d_df.loc[idx, 'principal component 1'] , final3d_df.loc[idx, 'principal component 2'] , final3d_df.loc[idx, 'principal component 3'] , c=color , s=30) ax.legend(targets) ax.grid() if save_name is not None: pl_.savefig(f"{save_in}\\three_d_PCA_{save_name}.png") if plot_duration: fig = pl_.figure(figsize=(8, 8)) ax = fig.add_subplot(111, projection="3d") ax.set_xlabel(f'Principal Component 1 - ratio = {round(pca3d.explained_variance_ratio_[0], 2)}', fontsize=15) ax.set_ylabel(f'Principal Component 2 - ratio = {round(pca3d.explained_variance_ratio_[1],2)}', fontsize=15) ax.set_zlabel(f'Principal Component 3 - ratio = {round(pca3d.explained_variance_ratio_[2],2)}', fontsize=15) ax.set_title(f'3 component PCA{title}', fontsize=20) final3d_df = pd_.concat([df[["condition", "duration"]], principal3d_df], axis=1) for tgt, color in zip(new_tgts, ["lavender", "royalblue", "navy", "lightcoral", "firebrick", "red"]): new3d_df = final3d_df.loc[(final_df["condition"] == tgt[0]) & (final3d_df["duration"] == tgt[1])] new3d_df = new3d_df.drop(["condition", "duration"], axis=1) ax.scatter(new3d_df['principal component 1'] , new3d_df['principal component 2'] , new3d_df['principal component 3'] , c=color , s=30) ax.legend(new_tgts) ax.grid() if save_name is not None: pl_.savefig(f"{save_in}\\three_d_PCA_duration_{save_name}.png") def KmeansOnDF(df: pd_.DataFrame(), nb_clusters: tuple, target: str, plot_bar: bool = True, rep_on_image: bool = False, labeled_somas=None, elbow: bool = False, intracluster_var: bool = True, save_name: str = None, save_in: str = None, title: str = "", duration: bool = False, ) -> KMeans: ''' Perform kmeans on the pandas dataframe. Can find the best number of cluster with elbow method, find the intracluster variance, and represent the result on the initial images. Plot barplots with percentage of each label for each condition. ''' # Separating the features from their conditions and durations all_target = pd_.DataFrame(df.loc[:, [target]].values, columns=[target]) df2 = df.drop([target, "duration"], axis=1) # Data standardization scaler = StandardScaler() stand_df = scaler.fit_transform(df2) # Best number of clusters using Elbow method if elbow: wcss = [] # within cluster sum of errors(wcss) for i in range(1, 24): kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0) kmeans.fit(stand_df) wcss.append(kmeans.inertia_) pl_.figure() pl_.plot(range(1, 24), wcss) pl_.plot(range(1, 24), wcss, 'bo') pl_.title('Elbow Method') pl_.xlabel('Number of clusters') pl_.ylabel('WCSS') pl_.show(block=True) pl_.close() # Kmeans with x clusters for nb_cluster in nb_clusters: kmeans = KMeans(n_clusters=nb_cluster, init='k-means++', max_iter=300, n_init=10, random_state=0) kmeans.fit_predict(stand_df) label_df = pd_.DataFrame(data=kmeans.labels_, columns=['label']) lab_cond_df = pd_.concat([label_df, all_target[target]], axis=1) # Intracluster variance if intracluster_var: var_df = pd_.DataFrame(stand_df) var = IntraClusterVariance(var_df, kmeans, nb_cluster, save_name) var_df = pd_.DataFrame(var, columns=["intracluster variance"]) var_df = var_df.rename({cluster: f"label {cluster}" for cluster in range(nb_cluster)}) if save_in: var_df.to_csv(f"{save_in}\\intracluster_variance_kmeans_{save_name}_k={nb_cluster}.csv") # TODO Intersection of ellipsoids of the covariance matrices # - ellipsoid equation: (x-mean)(1/Mcov)(x-mean).T <= 1 # Barplot if plot_bar: if duration: fig = pl_.figure(figsize=(16, 8)) ax = fig.add_subplot(1, 1, 1) (lab_cond_df.groupby("condition")["label"].value_counts(normalize=True).mul(100).rename( "Percentage (%)").reset_index().pipe((sb_.barplot, "data"), x="condition", y="Percentage (%)", hue="label", palette=sb_.color_palette("deep", n_colors=nb_cluster))) ax.set_ylim(0, 100) ax.set_title(f'Distribution of the clustering labels according to conditions{title}_k={nb_cluster}', fontsize=11) ax.grid() if save_name is not None: pl_.savefig(f"{save_in}\\Hist_Clustering_{save_name}_k={nb_cluster}.png") # pl_.show(block=True) # pl_.close() else: fig = pl_.figure(figsize=(16, 8)) ax= fig.add_subplot(1, 1, 1) (lab_cond_df.groupby("condition")["label"].value_counts(normalize=True).mul(100).rename( "Percentage (%)").reset_index().pipe((sb_.barplot, "data"), x="condition", y="Percentage (%)", hue="label", palette=sb_.color_palette("deep", n_colors=nb_cluster))) ax.set_ylim(0, 100) ax.grid() ax.set_title(f'Distribution of the clustering labels according to conditions{title}_k={nb_cluster}', fontsize=11) if save_name is not None: pl_.savefig(f"{save_in}\\Hist_Clustering_{save_name}_k={nb_cluster}.png") # pl_.show(block=True) # pl_.close() lab_cond_df2 = pd_.concat((lab_cond_df, df[["duration"]]), axis=1) for dur in df["duration"].unique(): dur_df = lab_cond_df2.loc[lab_cond_df2["duration"] == dur] fig = pl_.figure(figsize=(16, 8)) ax = fig.add_subplot(1, 1, 1) (dur_df.groupby("condition")["label"].value_counts(normalize=True).mul(100).rename( "Percentage (%)").reset_index().pipe((sb_.barplot, "data"), x="condition", y="Percentage (%)", hue="label", palette=sb_.color_palette("deep", n_colors=nb_cluster))) ax.set_ylim(0, 100) ax.grid() ax.set_title(f'Distribution of the clustering labels according to conditions{title}_k={nb_cluster} - duration = {dur}', fontsize=11) if save_name is not None: pl_.savefig(f"{save_in}\\Hist_Clustering_{save_name}_dur_{dur}_k={nb_cluster}.png") # pl_.show(block=True) # pl_.close() if save_name is not None: pl_.savefig(f"{save_in}\\Hist_duration_Clustering_{save_name}_k={nb_cluster}.png") print(f"Saved in {save_in}") # pl_.show(block=True) # pl_.close() # Representation on the image if rep_on_image: RepresentationOnImages(labeled_somas, kmeans, nb_cluster) return kmeans def IntraClusterVariance(df: pd_.DataFrame(), kmeans: KMeans(), nb_cluster: int, save_name: str = "") -> list: ''' Return the intracluster variance of a given cluster found by kmeans. ''' var = [] # TODO change to .inertia_ for cluster in range(nb_cluster): soma_cluster = [indx for indx, value in enumerate(kmeans.labels_) if value == cluster] mean_cluster = np_.average([df.iloc[row, :] for row in soma_cluster], axis=0) # TODO .cluster_centers_ variance = sum([np_.linalg.norm(df.iloc[row, :] - mean_cluster) ** 2 for row in soma_cluster]) / (len(soma_cluster) - 1) var.append(variance) print(f"Intracluster variance for {nb_cluster} clusters ({save_name}) :", var) return var def RepresentationOnImages(labeled_somas, kmeans, nb_cluster): ''' Represent the result of kmeans on labeled image. IN DVPT. Only available for a kmean intra-image. ''' clustered_somas = labeled_somas.copy() clustered_somas = np_.amax(clustered_somas, axis=0) for indx, value in enumerate(kmeans.labels_): for indx_axe, axe in enumerate(clustered_somas): for indx_pixel, pixel in enumerate(axe): if pixel == indx + 1: clustered_somas[indx_axe][indx_pixel] = value + 1 pl_.imshow(clustered_somas, cmap="tab20") pl_.title(f"n cluster = {nb_cluster}") pl_.show(block=True) pl_.close() def FeaturesStatistics(df: pd_.DataFrame(), save_in: str = None, title: str = "", describe: bool = True, heatmap: bool = True, drop_feat: bool = True, distribution: bool = True, stat_test: bool = True, decision_tree: bool = True, ): ''' Return the statistics allowing the user to choose the most relevant features to feed ML algorithms for ex. Statistical description, correlation heatmap, dropping correlated features or features with little difference between the two conditions, Plotting features distribution and boxplots, performing Kolmogorov-Smirnov two-sample test and Wilcoxon signed-rank two-sample test. Can draw a decision tree. ''' # # Overview of the basic stats on each columns of df if describe: description = df.describe() if save_in is not None: description.to_csv(f"{save_in}\\df_stat_description.csv") # Data formatting df_scalar = df.drop(["duration", "condition"], axis=1) df_cond = df.drop(["duration"], axis=1) df_groupby_dur = df.groupby("duration") # Compute the correlation matrix corr_matrix = df_scalar.corr().abs() if heatmap: # Plot heat map with correlation matrix btw features print("Heat map with correlation matrix btw features") # Generate a mask for the upper triangle mask = np_.triu(np_.ones_like(corr_matrix, dtype=np_.bool)) # Set up the figure fig, ax = pl_.subplots(figsize=(13, 9)) # Generate a custom diverging colormap cmap = sb_.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio sb_.heatmap(corr_matrix, mask=mask, cmap=cmap, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}, xticklabels=False) ax.set_title(f'Features correlation heat map{title}', fontsize=20) if save_in is not None: pl_.savefig(f"{save_in}\\Features correlation heat map{title}.png") pl_.close() if stat_test: # Create dictionaries to store the statistics and p-values dict_ks = {} dict_wx = {} dict_ks_dur = {} dict_wx_dur = {} for column in df_scalar.columns: # For each feature, perform a statistical test to know if the feature distribution or median is different btw CHO and DIO conditions cond_col_df = pd_.concat((df_scalar[column], df_cond["condition"]), axis=1) # Separate the conditions CHO = cond_col_df.loc[cond_col_df['condition'] == "CHO"] CHO = np_.asarray(CHO[column]) DIO = cond_col_df.loc[cond_col_df['condition'] == "DIO"] DIO = np_.asarray(DIO[column]) # Compare distribution between conditions (goodness of fit) ks = si_.stats.ks_2samp(CHO, DIO) dict_ks[column] = ks # Compare median between conditions wx = si_.stats.ranksums(CHO, DIO) dict_wx[column] = wx # Plot the p-values fig = pl_.figure(constrained_layout=False, figsize=(15,8)) gs = fig.add_gridspec(ncols=2, nrows=1) ax1 = fig.add_subplot(gs[0, 0]) ax2 = fig.add_subplot(gs[0, 1]) # ax1.set_title(f"Kolmogorov-Smirnov p-value btw conditions - {column}", fontsize=13, pad=20) ax1.grid() ax1.set_xlabel("Duration") ax1.set_yscale("log") ax1.set_ylabel("p-value") # ax2.set_title(f"Wilcoxon signed-rank p-value btw conditions - {column}", fontsize=13, pad=20) ax2.grid() ax2.set_xlabel("Duration") ax2.set_yscale("log") ax2.set_ylabel("p-value") # Do the same thing than above but separate durations between conditions for duration, values in df_groupby_dur: if duration not in dict_ks_dur: dict_ks_dur[duration] = {} dict_wx_dur[duration] = {} duration_df = values.drop(["duration"], axis=1) CHO_ = duration_df.loc[duration_df['condition'] == "CHO"] DIO_ = duration_df.loc[duration_df['condition'] == "DIO"] CHO_ = CHO_.drop(["condition"], axis=1) DIO_ = DIO_.drop(["condition"], axis=1) CHO_ = np_.asarray(CHO_[column]) DIO_ = np_.asarray(DIO_[column]) # Compare distribution ks2 = si_.stats.ks_2samp(CHO_, DIO_) dict_ks_dur[duration][column] = ks2 # Compare median wx2 = si_.stats.ranksums(CHO_, DIO_) dict_wx_dur[duration][column] = wx2 ax1.plot([f"{duration}" for duration, _ in df_groupby_dur], [dict_ks_dur[duration][column][1] for duration, _ in df_groupby_dur], "g") ax1.plot([f"{duration}" for duration, _ in df_groupby_dur], [dict_ks_dur[duration][column][1] for duration, _ in df_groupby_dur], 'ko') ax2.plot([f"{duration}" for duration, _ in df_groupby_dur], [dict_wx_dur[duration][column][1] for duration, _ in df_groupby_dur], "y") ax2.plot([f"{duration}" for duration, _ in df_groupby_dur], [dict_wx_dur[duration][column][1] for duration, _ in df_groupby_dur], 'ko') pl_.tight_layout() if save_in: pl_.savefig(f"{save_in}\\p_values_duration_{column}") pl_.close() # Reformat the data to save it as csv df_ks = pd_.DataFrame.from_dict(data=dict_ks) df_ks = df_ks.rename(index={0: "Kolmogorov-Smirnov statistic", 1: "Kolmogorov-Smirnov p-value"}) df_wx = pd_.DataFrame.from_dict(data=dict_wx) df_wx = df_wx.rename(index={0: "Wilcoxon statistic", 1: "Wilcoxon p-value"}) df_ks_dur = pd_.DataFrame() df_wx_dur = pd_.DataFrame() for key in dict_ks_dur.keys(): df_ks_dur = pd_.concat((df_ks_dur, pd_.DataFrame.from_dict(data=dict_ks_dur[key]))) df_ks_dur = df_ks_dur.rename(index={0: f"{key} - Kolmogorov-Smirnov statistic", 1: f"{key} - Kolmogorov-Smirnov p-value"}) df_wx_dur = pd_.concat((df_wx_dur, pd_.DataFrame.from_dict(data=dict_wx_dur[key]))) df_wx_dur = df_wx_dur.rename(index={0: f"{key} - Wilcoxon statistic", 1: f"{key} - Wilcoxon p-value"}) stat_tests_df1 = pd_.concat((df_ks, df_wx)) # KS and Wx all durations stat_tests_df2 = pd_.concat((df_ks_dur, df_wx_dur)) # KS and Wx for each duration if save_in: stat_tests_df1.to_csv(f"{save_in}\\stat_test_KS_wilcoxon_all.csv") stat_tests_df2.to_csv(f"{save_in}\\stat_test_KS_wilcoxon_for_each_duration.csv") if drop_feat: # Drop highly correlated features print("Drop highly correlated features") # Select upper triangle of correlation matrix upper = corr_matrix.where(np_.triu(np_.ones(corr_matrix.shape), k=1).astype(np_.bool)) # Find index of feature columns with correlation greater than 0.9 to_drop = [column for column in upper.columns if any(upper[column] > 0.9)] # Drop features drop_HCF_df = df_scalar.drop(df[to_drop], axis=1) # Drop column with null variance drop_HCF_df = drop_HCF_df.loc[:, drop_HCF_df.var() != 0.0] if stat_test: # drop non significant features (distribution and mean not different btw CHO and DIO) drop_HCF_df_6H = drop_HCF_df.copy() # based on all durations; to_drop =[column for column in drop_HCF_df.columns if (stat_tests_df1.loc["Kolmogorov-Smirnov p-value", column] > 1.0e-2) and (stat_tests_df1.loc["Wilcoxon p-value", column] > 1.0e-2)] drop_HCF_df = drop_HCF_df.drop(drop_HCF_df[to_drop], axis=1) # only based on 6H duration; to_drop_6H =[column for column in drop_HCF_df_6H.columns if (stat_tests_df2.loc["6H - Kolmogorov-Smirnov p-value", column] > 1.0e-3) and (stat_tests_df2.loc["6H - Wilcoxon p-value", column] > 1.0e-3)] drop_HCF_df_6H = drop_HCF_df_6H.drop(drop_HCF_df_6H[to_drop_6H], axis=1) drop_HCF_df_6H = pd_.concat((df[["condition", "duration"]], drop_HCF_df_6H), axis=1) if save_in: drop_HCF_df_6H.to_csv(f"{save_in}\\df_drop_highly_corr_feat_6H.csv") print(f"Selection of features with distribution and median of CHO vs DIO different in: {save_in}") # Add the condition and duration drop_HCF_df = pd_.concat((df[["condition", "duration"]], drop_HCF_df), axis=1) if save_in: drop_HCF_df.to_csv(f"{save_in}\\df_drop_highly_corr_feat.csv") print(f"Selection of low correlated features in: {save_in}") # Statistics for each features if distribution: for column in df_scalar.columns: cond_col_df = pd_.concat((df_scalar[column], df_cond["condition"]), axis=1) fig = pl_.figure(constrained_layout=False) gs = fig.add_gridspec(ncols=2, nrows=1) ax1 = fig.add_subplot(gs[0, 0]) ax2 = fig.add_subplot(gs[0, 1]) # Plot a histogram and kernel density estimate print(f"Plot a histogram and kernel density estimate for feature {column}") CHO = cond_col_df.loc[cond_col_df['condition'] == "CHO"] DIO = cond_col_df.loc[cond_col_df['condition'] == "DIO"] sb_.distplot(CHO[[column]], color="b", ax=ax1) sb_.distplot(DIO[[column]], color="r", ax=ax1) # Draw a boxplot print(f"Plot a boxplot for feature {column}") sb_.boxplot(data=df_cond, x="condition", y=column, hue="condition", palette=["b", "r"], ax=ax2) ax1.set_title(f'{column} distribution{title}', fontsize=11) ax2.set_title(f'{column} boxplot{title}', fontsize=11) pl_.tight_layout() if save_in is not None: pl_.savefig(f"{save_in}\\feat_distrib_{column}.png") pl_.close() # Decision tree if decision_tree: # Test btw CHO and DIO dt_df = df.drop(["condition", "duration"], axis=1) clf = tree.DecisionTreeClassifier(max_depth=4) clf = clf.fit(dt_df, df["condition"]) fig = pl_.figure(figsize=(150, 65)) tree.plot_tree(clf, feature_names=df.columns, class_names=["CHO", "DIO"], filled=True, rounded=True, fontsize=60) fig.suptitle(f"Decision tree all durations", fontsize=120) if save_in: pl_.savefig(f"{save_in}\\Decision_tree_all_durations_{title}.png") pl_.close() # Test btw CHO and DIO depending on duration for duration, values in df_groupby_dur: duration_df = values.drop(["duration", "condition"], axis=1) clf = tree.DecisionTreeClassifier(max_depth=3) clf = clf.fit(duration_df, values["condition"]) fig = pl_.figure(figsize=(30, 16)) tree.plot_tree(clf, feature_names=df.columns, class_names=["CHO", "DIO"], filled=True, rounded=True, fontsize=8) fig.suptitle(f"Decision tree {duration}", fontsize=16) if save_in: pl_.savefig(f"{save_in}\\Decision_tree_{duration}_{title}.png") pl_.close() if __name__ == "__main__": # # os.chdir("path") ## If need to concatenate files: # all_filenames = [i for i in glob.glob('*.{}'.format("csv"))] # print(all_filenames) # df = pd_.concat([pd_.read_csv(f, index_col=0) for f in all_filenames]) # df.to_csv(".\combined_features.csv") ## If use labeled somas: # labeled_somas = np_.load("path.npy") # df = pd_.read_csv(".\combined_features.csv", index_col=0) ## Parameters path = sy_.argv[1] save_in = sy_.argv[2] ## DF cleaning df0 = pd_.read_csv(f"{path}\\features.csv", # index_col=0, ) df = df0.drop(["Unnamed: 0"], axis=1) ## Statistical analysis # For the moment drop the columns with non scalar values, and un-useful values # - TO BE CHANGED TODO (use distance metrics such as bhattacharyya coef, etc) df = df.drop(["soma uid", "spherical_angles_eva", "spherical_angles_evb", "hist_lengths", "hist_lengths_P", "hist_lengths_S", "hist_curvature", "hist_curvature_P", "hist_curvature_S"], axis=1) df = df.dropna(axis=0, how="any") # -- PCA with all the features print("\nALL FEATURES\n") # Between the two conditions, regardless the duration of experiment (2 conditions, all durations) PCAOnDF(df, target="condition", targets=["CHO", "DIO"], colors=["b", "r"], save_name="all_features", save_in=save_in, three_D=True, ) # Between the two conditions, for each duration (2 conditions, 3 durations) groupby_duration = df.groupby("duration") for duration, values in groupby_duration: ## duration: str, values: pd_.DataFrame() PCAOnDF(values, target="condition", targets=["CHO", "DIO"], colors=["b", "r"], save_name=f"{duration}_features", save_in=save_in, title=f" - {duration} Sample", plot_duration=False, three_D=True, ) # -- K-means with all the features (2 conditions) # Test for multiple glial populations # Between the two conditions, regardless the duration of experiment (2 conditions, all durations) kmeans = KmeansOnDF(df, target="condition", nb_clusters=(2, 3, 4, 5), elbow=True, intracluster_var=True, plot_bar=True, save_name="all_features_multiple_pop", save_in=save_in, ) # Between the two conditions, for each duration (2 conditions, 3 durations) groupby_duration = df.groupby("duration") for duration, values in groupby_duration: kmeans = KmeansOnDF(values, target="condition", nb_clusters=(2, 3, 4, 5), elbow=False, intracluster_var=True, plot_bar=True, save_name=f"{duration}_features_multiple_pop", title=f" - {duration} Sample", duration=True, save_in=save_in, ) # -- Various plots to analyse the data and find discriminant features by statistical analysis print("\nFEATURE SELECTION\n") FeaturesStatistics(df, save_in=save_in, describe=True, heatmap=True, distribution=True, stat_test=True, drop_feat=True, decision_tree=False, ) ## TODO: Enter selected features here # selected_features = [] # selected_df = df[selected_features] ## TODO Or use the csv with dropped features selected_df = pd_.read_csv(f"{save_in}\\df_drop_highly_corr_feat.csv") # selected_df = pd_.read_csv(f"{save_in}\\df_drop_highly_corr_feat_6H.csv") ## If an error raises, only run the part until FeaturesStatistics included, and then run the last part. # if other columns need to be dropped: try: to_drop = ["Unnamed: 0", "min_curvature"] selected_df = selected_df.drop(to_drop, axis=1) except: selected_df = selected_df.drop(["Unnamed: 0"], axis=1) # -- PCA with all the features print("\nSELECTED FEATURES\n") # Between the two conditions, regardless the duration of experiment (2 conditions, all durations) PCAOnDF(df, target="condition", targets=["CHO", "DIO"], colors=["b", "r"], save_name="all_selected_features", save_in=save_in, three_D=True, ) # Between the two conditions, for each duration (2 conditions, 3 durations) groupby_duration = df.groupby("duration") for duration, values in groupby_duration: # duration: str, values: pd_.DataFrame() PCAOnDF(values, target="condition", targets=["CHO", "DIO"], colors=["b", "r"], save_name=f"{duration}_selected_features", save_in=save_in, title=f" - {duration} Sample - selected features", plot_duration=False, three_D=True, ) # -- K-means with all the features (2 conditions) # Between the two conditions, regardless the duration of experiment (2 conditions, all durations) kmeans = KmeansOnDF(df, target="condition", nb_clusters=(2,3,4,5), elbow=False, intracluster_var=True, plot_bar=True, save_name="all_selected_features", save_in=save_in, ) # Between the two conditions, for each duration (2 conditions, 3 durations) groupby_duration = df.groupby("duration") for duration, values in groupby_duration: kmeans = KmeansOnDF(values, target="condition", nb_clusters=(2,3,4,5), elbow=False, intracluster_var=True, plot_bar=True, save_name=f"{duration}_selected_features", save_in=save_in, title=f" - {duration} Sample - selected features", duration=True, ) ## TODO: Random forests ?