Newer
Older
# Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# Time profiling:
# python -m cProfile -o runtime/profiling.log -s name main.py
# Memory profiling:
# python -m memory_profiler main.py
# or
# mprof run main.py
# mprof plot
NADAL Morgane
committed
import brick.component.connection as cn_
import brick.component.extension as xt_
import brick.component.soma as sm_
import brick.general.feedback as fb_
import brick.processing.map_labeling as ml_
# import brick.processing.image_verification as iv_
from sklgraph.skl_fgraph import skl_graph_t
from sklgraph.skl_map import skl_map_t
import brick.processing.graph_feat_extraction as ge_
NADAL Morgane
committed
import imageio as io_
import skimage.morphology as mp_
import skimage.measure as ms_
NADAL Morgane
committed
import pandas as pd_
if sy_.argv.__len__() < 2:
print("Missing parameter file argument")
sy_.exit(0)
if not (os_.path.isfile(sy_.argv[1]) and os_.access(sy_.argv[1], os_.R_OK)):
print("Wrong parameter file path or parameter file unreadable")
sy_.exit(0)
data_path = None
channel = None
save_csv = None
dilatation_erosion = None
size_voxel_in_micron = None
soma_low_c = None
soma_high_c = None
soma_selem_micron_c = None
soma_min_area_c = None
ext_low_c = None
ext_high_c = None
ext_selem_micron_c = None
ext_min_area_c = None
max_straight_sq_dist_c = None
max_weighted_length_c = None
scale_range = None
scale_step = None
alpha = None
beta = None
frangi_c = None
diff_mode = None
bright_on_dark = None
method = None
hist_step_length = None
number_of_bins_length = None
hist_bins_borders_length = None
hist_min_curvature = None
hist_step_curvature = None
number_of_bins_curvature = None
hist_bins_borders_curvature = None
with_plot = None
in_parallel = None
exec(open(sy_.argv[1]).read()) # Only with search_parameters.py (stable version)
def Test_Tangency_ext_conn(soma):
for extension in soma.extensions:
for site in list(zip(*extension.sites)):
close_end_pt = tuple(
(site[0] + i, site[1] + j, site[2] + k)
for i in (-1, 0, 1)
for j in (-1, 0, 1)
for k in (-1, 0, 1)
if i != 0 or j != 0 or k != 0)
for ext in tuple(zip(soma.connection_path.values())):
if ext[0] is not None:
for conn in list(zip(*np_.asarray(ext[0]))):
if (conn in close_end_pt) and (conn not in list(zip(*extension.sites))):
for extens in soma.extensions:
if conn not in zip(*extens.end_points):
if conn not in pb:
pb.append(conn)
print("\nconn: ", conn, "\next_site: ", site, "\next_uid: ", extension.uid)
#########----------- Executable version with files AND repositories ------------###########
def NutriMorph(data_path: str,
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
channel=channel,
dilatation_erosion=dilatation_erosion,
size_voxel_in_micron=size_voxel_in_micron,
soma_low_c=soma_low_c,
soma_high_c=soma_high_c,
soma_selem_micron_c=soma_selem_micron_c,
soma_min_area_c=soma_min_area_c,
soma_max_area_c=soma_max_area_c,
adapt_hist_equalization=adapt_hist_equalization,
ext_low_c=ext_low_c,
ext_high_c=ext_high_c,
ext_selem_micron_c=ext_selem_micron_c,
ext_min_area_c=ext_min_area_c,
max_straight_sq_dist_c=max_straight_sq_dist_c,
max_weighted_length_c=max_weighted_length_c,
scale_range=scale_range,
scale_step=scale_step,
alpha=alpha,
beta=beta,
frangi_c=frangi_c,
diff_mode=diff_mode,
bright_on_dark=bright_on_dark,
method=method,
hist_min_length=hist_min_length,
hist_step_length=hist_step_length,
number_of_bins_length=number_of_bins_length,
hist_bins_borders_length=hist_bins_borders_length,
hist_min_curvature=hist_min_curvature,
hist_step_curvature=hist_step_curvature,
number_of_bins_curvature=number_of_bins_curvature,
hist_bins_borders_curvature=hist_bins_borders_curvature,
with_plot=with_plot,
in_parallel=in_parallel) -> pd_.DataFrame():
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
soma_t = sm_.soma_t
extension_t = xt_.extension_t
print(f"STARTED: {tm_.strftime('%a, %b %d %Y @ %H:%M:%S')}")
start_time = tm_.time()
# TODO add proper warning with warn module
# --- Images
# Find the name of the file, eq. to the biological tested condition number x
name_file = os_.path.basename(data_path)
print("FILE: ", name_file)
name_file = name_file.replace(".tif", "")
name_dir = os_.path.dirname(data_path)
print("DIR: ", name_dir)
# Find the dimension of the image voxels in micron
# TODO do something more general, here too specific to one microscope metadata
size_voxel_in_micron = in_.FindVoxelDimensionInMicron(data_path, size_voxel_in_micron=size_voxel_in_micron)
# Read the image
image = io_.volread(data_path)
# Image size verification - simple version without user interface
image = in_.ImageVerification(image, channel)
# iv_.image_verification(image, channel) # -> PySide2 user interface # TODO: must return the modified image!
# /!\ conflicts between some versions of PySide2 and Python3
# image = image[:, 800:, 300:]
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
img_shape = image.shape
#
print(f"IMAGE: s.{img_shape} t.{image.dtype} m.{image.min()} M.{image.max()}")
# Intensity relative normalization (between 0 and 1).
# Image for soma normalized for hysteresis
image_for_soma = in_.IntensityNormalizedImage(image)
# Image for extensions not normalized for frangi enhancement
image_for_ext = image.copy()
print(f"NRM-IMG: t.{image_for_soma.dtype} m.{image_for_soma.min():.2f} M.{image_for_soma.max():.2f}")
# --- Initialization
som_nfo = {}
ext_nfo = {}
axes = {}
#
# --- Somas
print("\n--- Soma Detection")
# Change the soma parameters from micron to pixel dimensions, using the previously determined voxel size
soma_min_area_c = in_.ToPixel(soma_min_area_c, size_voxel_in_micron, dimension=(0, 1))
soma_max_area_c = in_.ToPixel(soma_max_area_c, size_voxel_in_micron, dimension=(0, 1))
soma_selem_c = mp_.disk(in_.ToPixel(soma_selem_micron_c, size_voxel_in_micron))
# - Create the maps for enhancing and detecting the soma
# Hysteresis thresholding and closing/opening
print("Hysteresis thresholding: ", end="")
som_nfo["map_small"] = soma_t.Map(image_for_soma, soma_low_c, soma_high_c, soma_selem_c)
print("Done")
# Deletion of too small elements
print("Morphological cleaning: ", end="")
som_nfo["map_small"], som_lmp_small = soma_t.DeleteSmallSomas(som_nfo["map_small"], soma_min_area_c)
# Deletion of too big elements (probably aggregation of cells)
# Separated from the deletion of small elements to avoid extensions to be detected where too big somas were just deleted
som_nfo["map"], som_lmp = soma_t.DeleteBigSomas(som_nfo["map_small"], som_lmp_small, soma_max_area_c)
print("Done")
# Labelling of somas, find the number of somas
print("Somas labelling: ", end="")
som_nfo["lmp"], n_somas = ms_.label(som_nfo["map"], return_num=True)
print("Done")
# Use relabel instead of label to optimize the algorithm. /!\ But BUG.
# som_nfo["lmp"] = relabel_sequential(som_lmp)[0]
# n_somas = som_nfo["lmp"].max()
# Create the distance and influence maps used next for connexions between somas-extensions and extensions-extensions
print("Distance and Influence Map creation: ", end="")
som_nfo["dist_to_closest"], som_nfo["influence_map"] = soma_t.InfluenceMaps(som_nfo["lmp"])
print("Done")
# Create the tuple somas, containing all the objects 'soma'
print("Somas creation: ", end="")
somas = tuple(soma_t().FromMap(som_nfo["lmp"], uid) for uid in range(1, n_somas + 1))
print("Done")
print(f" n = {n_somas}")
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
if with_plot:
fb_.PlotSomas(somas, som_nfo, axes)
#
# -- Extentions
print("\n--- Extension Detection")
# Set to zeros the pixels belonging to the somas.
# Take into account the aggregation of cells detected as one big soma to avoid extension creation there
del_soma = (som_nfo["map_small"] > 0).nonzero()
image_for_ext[del_soma] = 0
# Change the extensions parameters from micron to pixel dimensions
ext_min_area_c = in_.ToPixel(ext_min_area_c, size_voxel_in_micron, dimension=(0, 1))
if ext_selem_micron_c == 0:
ext_selem_pixel_c = None
else:
ext_selem_pixel_c = mp_.disk(in_.ToPixel(ext_selem_micron_c, size_voxel_in_micron))
# - Perform frangi feature enhancement (via python or c - faster - implementation)
enhanced_ext, ext_scales = extension_t.EnhancedForDetection(
image_for_ext,
scale_range,
scale_step,
alpha,
beta,
frangi_c,
bright_on_dark,
method,
diff_mode=diff_mode,
in_parallel=in_parallel)
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"Elapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}\n")
# - Creation of the enhanced maps
# Enhanced the contrast in frangi output
print('Enhancing Contrast: ', end='')
if adapt_hist_equalization:
# necessary but not sufficient, histogram equalisation (adaptative)
enhanced_ext = ex_.equalize_adapthist(enhanced_ext)
else:
# necessary but not sufficient, histogram equalisation (global)
enhanced_ext = ex_.equalize_hist(enhanced_ext)
# Rescale the image by stretching the intensities between 0 and 255, necessary but not sufficient
enhanced_ext = ex_.rescale_intensity(enhanced_ext, out_range=(0, 255))
print('Done')
# Hysteresis thersholding
print('Hysteresis Thresholding: ', end='')
ext_nfo["coarse_map"] = extension_t.CoarseMap(enhanced_ext, ext_low_c, ext_high_c, ext_selem_pixel_c)
print('Done')
# Deletion of too small elements
print('Morphological cleaning: ', end='')
ext_nfo["coarse_map"], ext_lmp = extension_t.FilteredCoarseMap(ext_nfo["coarse_map"], ext_min_area_c)
print('Done')
# Creation of the extensions skeleton
print('Skeletonization and Thinning: ', end='')
ext_nfo["map"] = extension_t.FineMapFromCoarseMap(ext_nfo["coarse_map"])
print('Done')
# Deletion of extensions found within the somas
print('Map Labelling: ', end='')
ext_nfo["map"][som_nfo["map"] > 0] = 0
# Labelling of extensions and number of extensions determined
ext_nfo["lmp"], n_extensions = ms_.label(ext_nfo["map"], return_num=True)
print('Done')
# Use relabel instead of label to optimize the algorithm. BUT PROBLEM WITH THE NUMBER OF EXTENSIONS DETECTED !
# ext_nfo["lmp"] = relabel_sequential(ext_lmp)[0]
# n_extensions = ext_nfo["lmp"].max()
# Create the tuple extensions, containing all the objects 'extension'
print('Extensions creation: ', end='')
extensions = tuple(
extension_t().FromMap(ext_nfo["lmp"], ext_scales, uid)
for uid in range(1, n_extensions + 1))
print('Done')
print(f" n = {n_extensions}")
# Create global end point map for extensions
glob_ext_ep_map = xt_.EndPointMap(ext_nfo["lmp"] > 0)
all_end_points = list(zip(*glob_ext_ep_map.nonzero())) # updated in ValidateConnexion
#
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
if with_plot:
fb_.PlotExtensions(extensions, ext_nfo, img_shape)
# -- Preparation for Connections
# Calculate the COSTS of each pixel on the image and DILATE the existing extensions to
# avoid tangency of connexions to extensions
dijkstra_costs = in_.DijkstraCosts(image, som_nfo["map"], ext_nfo["map"])
if dilatation_erosion:
# Dilate all extensions
for extension in extensions:
cn_.Dilate(extension.sites, dijkstra_costs)
# -- Soma-Extention
print("\n--- Soma <-> Extension")
# Change the extensions parameters from micron to pixel dimensions
max_straight_sq_dist_c = in_.ToPixel(max_straight_sq_dist_c, size_voxel_in_micron)
max_weighted_length_c = in_.ToPixel(max_weighted_length_c, size_voxel_in_micron)
# Find the candidate extensions, with their endpoints, for connexion to the somas
candidate_conn_nfo = cn_.CandidateConnections(
somas,
som_nfo["influence_map"],
som_nfo["dist_to_closest"],
extensions,
max_straight_sq_dist_c,
)
# For each candidate, verify that it is valid based on the shortest path and the maximum allowed straight distance
for ep_idx, soma, extension, end_point in candidate_conn_nfo:
# Only try to connect if the extension is not already connected
if extension.is_unconnected:
print(f" Soma.{soma.uid} <-?-> Ext.{extension.uid}({ep_idx})", end="")
if dilatation_erosion:
# Erode the end_point of the extension in the costs map
cn_.Erode((end_point,), dijkstra_costs, extension, extensions, image, all_end_points=all_end_points)
# Use of Dijkstra shortest weighted path
path, length = cn_.ShortestPathFromToN(
image=image,
point=end_point,
extension=extension,
costs=dijkstra_costs,
candidate_points_fct=soma.ContourPointsCloseTo,
max_straight_sq_dist=max_straight_sq_dist_c,
erode_path=False,
)
# Keep the connexion only if inferior to the allowed max weighted distance
# length in pixel and max_weighted_length_c too
if length <= max_weighted_length_c:
# Validate and update all the fields + dilate again the whole extension
cn_.ValidateConnection(soma, extension, end_point, path, dijkstra_costs, all_ep=all_end_points)
if dilatation_erosion:
# Dilate extensions
cn_.Dilate(extension.sites, dijkstra_costs)
print(": Made")
else:
if dilatation_erosion:
cn_.Dilate(extension.sites, dijkstra_costs)
print("")
else:
if dilatation_erosion:
cn_.Dilate(extension.sites, dijkstra_costs)
print("")
fb_.PrintConnectedExtensions(extensions)
#
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
if with_plot:
fb_.PlotSomasWithExtensions(somas, som_nfo, "all")
# -- Extention-Extention
print("\n--- Extension <-> Extension")
should_look_for_connections = True
# Update the soma maps with next Ext-Ext connexions
while should_look_for_connections:
if dilatation_erosion:
# Update the costs by dilating everything again plus the contour points of the soma
for soma in somas:
cn_.Dilate(soma.contour_points, dijkstra_costs)
# Below probably not necessary but security
for extension in soma.extensions:
cn_.Dilate(extension.sites, dijkstra_costs)
# Update the final somas + ext map by adding the new extensions and their connexion paths
som_nfo["soma_w_ext_lmp"] = soma_t.SomasLMap(somas)
# Update the influence map
som_nfo["dist_to_closest"], som_nfo["influence_map"] = soma_t.InfluenceMaps(som_nfo["soma_w_ext_lmp"])
# Find the candidate extensions for connexion to the primary extensions
candidate_conn_nfo = cn_.CandidateConnections(
somas,
som_nfo["influence_map"],
som_nfo["dist_to_closest"],
extensions,
max_straight_sq_dist_c,
)
should_look_for_connections = False
# For each candidate, verify if valid based on the shortest path and the maximum allowed straight distance
for ep_idx, soma, extension, end_point in candidate_conn_nfo:
# Only try to connect if the extension is not already connected
if extension.is_unconnected:
print(f" Soma.{soma.uid} <-?-> Ext.{extension.uid}({ep_idx})", end="")
if dilatation_erosion:
# Erode the end_point of the extension in the costs map
cn_.Erode((end_point,), dijkstra_costs, extension, extensions, image, all_end_points=all_end_points)
# Use of Dijkstra shortest weighted path
path, length = cn_.ShortestPathFromToN(
image=image,
point=end_point,
extension=extension,
costs=dijkstra_costs,
candidate_points_fct=soma.ExtensionPointsCloseTo,
extensions=extensions,
all_end_points=all_end_points,
max_straight_sq_dist=max_straight_sq_dist_c,
erode_path=dilatation_erosion,
)
# Keep the connexion only if inferior to the allowed max weighted distance
if length <= max_weighted_length_c:
# Verify that the last element of the connexion path is contained in the extension to be connected
# If so, returns the extensions containing the path last site.
tgt_extenstion = extension_t.ExtensionContainingSite(extensions, path[-1])
# Validate connexion: update the glial component objects and store more info in their fields
cn_.ValidateConnection(tgt_extenstion, extension, end_point, path, dijkstra_costs, all_ep=all_end_points)
if dilatation_erosion:
# Dilate extensions
cn_.Dilate(extension.sites, dijkstra_costs)
should_look_for_connections = True
print(": Made")
else:
if dilatation_erosion:
cn_.Dilate(extension.sites, dijkstra_costs)
print("")
else:
if dilatation_erosion:
cn_.Dilate(extension.sites, dijkstra_costs)
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
print("")
# -- Create an extension map containing all the ext + connexions, without the somas.
# Used for the graphs extraction
ext_nfo["lmp_soma"] = som_nfo['soma_w_ext_lmp'].copy()
ext_nfo["lmp_soma"][som_nfo["map"] > 0] = 0
#
fb_.PrintConnectedExtensions(extensions)
#
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
if with_plot:
fb_.PlotSomasWithExtensions(somas, som_nfo, "with_ext_of_ext")
# -- Summary
print("\n")
for soma in somas:
print(soma)
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
if with_plot:
pl_.show()
if save_images is not None:
po_.MaximumIntensityProjectionZ(som_nfo['soma_w_ext_lmp'],
block=False,
output_image_file_name=f"{save_images}\\MIP_{name_file}.png")
# --- Extract all the extensions of all somas as a graph
print('\n--- Graph extraction')
# Create the graphs with SKLGraph module (available on Eric Debreuve Gitlab)
for soma in somas:
print(f" Soma {soma.uid}", end="")
# Create SKLGraph skeletonized map
ext_map = skl_map_t.FromShapeMap(ext_nfo['lmp_soma'] == soma.uid,
store_widths=True,
skeletonize=True,
do_post_thinning=True)
# Create the graph from the SKLGaph skeletonized map
soma.skl_graph = skl_graph_t.FromSkeleton(ext_map, end_point, size_voxel=size_voxel_in_micron)
# --- Find the root of the {ext+conn} graphs.
# Roots are the nodes of degree 1 that are to be linked to the soma
soma.graph_roots = ge_.FindGraphsRootWithNodes(soma)
# Add a node "soma" and link it to the root nodes
soma_node = f"S-{int(soma.centroid[0])}-{int(soma.centroid[1])}-{int(soma.centroid[2])}"
soma.skl_graph.add_node(soma_node, soma=True, soma_nfo=soma)
for node in soma.graph_roots.values():
soma.skl_graph.add_edge(node, soma_node, root=True)
if save_images is not None:
nx_.draw_networkx(soma.skl_graph)
pl_.savefig(f"{save_images}\\graph_{name_file}_soma{soma.uid}.png")
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
print(": Done")
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
# --- Extract features
print('\n--- Features Extraction\n')
# Parameters
if hist_bins_borders_length is None:
number_of_bins_length = int(number_of_bins_length)
bins_length = np_.linspace(hist_min_length, hist_min_length + hist_step_length * number_of_bins_length,
num=number_of_bins_length)
bins_length[-1] = np_.inf
else:
bins_length = np_.array(hist_bins_borders_length)
bins_length[-1] = np_.inf
if hist_bins_borders_curvature is None:
number_of_bins_curvature = int(number_of_bins_curvature)
bins_curvature = np_.linspace(hist_min_curvature,
hist_min_curvature + hist_step_curvature * number_of_bins_curvature,
num=number_of_bins_curvature)
bins_curvature[-1] = np_.inf
else:
bins_curvature = np_.array(hist_bins_borders_curvature)
bins_curvature[-1] = np_.inf
# Pandas dataframe creation with all the measured features
features_df = ge_.ExtractFeaturesInDF(name_file,
somas,
size_voxel_in_micron,
bins_length,
bins_curvature,
ext_scales,
)
# Save the pandas df into .csv
if save_csv is not None:
features_df.to_csv(f"{save_csv}\\{name_file}.csv")
else:
features_df.to_csv(f"{name_dir}\\{name_file}.csv")
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
print(f"DONE: {tm_.strftime('%a, %b %d %Y @ %H:%M:%S')}\n")
return features_df
if __name__ == '__main__':
# --- Extract cell graphs and features from microscope images using NutriMorph function.
#
# Differentiate between path to a tiff file or to a repository
if pathlib.Path(data_path).is_file():
# Perform NutriMorph algorithm on the file entered in parameters
print("WARNING: Will not perform features analysis on a single image.\n For features analysis, "
"give a directory path.\n")
features_df = NutriMorph(data_path)
elif pathlib.Path(data_path).is_dir():
# Keep the directory to the repository
name_dir = os_.path.dirname(data_path)
# Initialize the future concatenated features
concatenated_features_df = pd_.DataFrame()
# Find all the tiff files in the parent and child repositories
for path in pathlib.Path(data_path).glob("**/*.tif"):
if path.is_file():
# Perform NutriMorph algorithm
features_df = NutriMorph(path)
# Concatenate all the dataframes
concatenated_features_df = concatenated_features_df.append(features_df)
# If some rows (ie. somas0) have NaN, drop them
# -- due to best fitting ellipsoid algo (JTJ is singular due to convex hull being flat)
concatenated_features_df = concatenated_features_df.dropna(axis=0, how="any")
# Save to .csv in the parent repository
if save_csv is None:
concatenated_features_df.to_csv(f"{data_path}\\features.csv")
else:
concatenated_features_df.to_csv(f"{save_csv}\\features.csv")
NADAL Morgane
committed
# Clustering with this df and module features_analysis.py
if statistical_analysis:
os_.system(f"feature_analysis.py {save_csv}\\features.csv")
else:
raise ImportError("Not a valid data path!")