Newer
Older

Mathieu Faverge
committed
/**
*

Mathieu Faverge
committed
*

Mathieu Faverge
committed
*
* @copyright 2016-2017 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
* Univ. Bordeaux. All rights reserved.
*
* @version 1.0.0

Mathieu Faverge
committed
* @author Xavier Lacoste
* @author Pierre Ramet
* @author Mathieu Faverge
* @date 2013-06-24
*

Mathieu Faverge
committed
**/
#include "common.h"
#include "z_spm.h"
#include "c_spm.h"
#include "d_spm.h"
#include "s_spm.h"
#include "p_spm.h"
PICHON Gregoire
committed
#include <cblas.h>
PICHON Gregoire
committed
static int (*conversionTable[3][3][6])(spmatrix_t*) = {

Mathieu Faverge
committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/* From CSC */
{{ NULL, NULL, NULL, NULL, NULL, NULL },
{ p_spmConvertCSC2CSR,
NULL,
s_spmConvertCSC2CSR,
d_spmConvertCSC2CSR,
c_spmConvertCSC2CSR,
z_spmConvertCSC2CSR },
{ p_spmConvertCSC2IJV,
NULL,
s_spmConvertCSC2IJV,
d_spmConvertCSC2IJV,
c_spmConvertCSC2IJV,
z_spmConvertCSC2IJV }},
/* From CSR */
{{ p_spmConvertCSR2CSC,
NULL,
s_spmConvertCSR2CSC,
d_spmConvertCSR2CSC,
c_spmConvertCSR2CSC,
z_spmConvertCSR2CSC },
{ NULL, NULL, NULL, NULL, NULL, NULL },
{ p_spmConvertCSR2IJV,
NULL,
s_spmConvertCSR2IJV,
d_spmConvertCSR2IJV,
c_spmConvertCSR2IJV,
z_spmConvertCSR2IJV }},
/* From IJV */
{{ p_spmConvertIJV2CSC,
NULL,
s_spmConvertIJV2CSC,
d_spmConvertIJV2CSC,
c_spmConvertIJV2CSC,
z_spmConvertIJV2CSC },
{ p_spmConvertIJV2CSR,
NULL,
s_spmConvertIJV2CSR,
d_spmConvertIJV2CSR,
c_spmConvertIJV2CSR,
z_spmConvertIJV2CSR },
{ NULL, NULL, NULL, NULL, NULL, NULL }}
};

Mathieu Faverge
committed
/**
*******************************************************************************
*
*
*******************************************************************************
*
* The sparse matrix to init.
*
*******************************************************************************/
void
spm->mtxtype = SpmGeneral;
spm->flttype = SpmDouble;
spm->fmttype = SpmCSC;
spm->gN = 0;
spm->n = 0;
spm->gnnz = 0;
spm->nnz = 0;
spm->gNexp = 0;
spm->nexp = 0;
spm->gnnzexp = 0;
spm->nnzexp = 0;
spm->colptr = NULL;
spm->rowptr = NULL;
spm->loc2glob = NULL;
spm->values = NULL;
}
/**
*******************************************************************************
*
* @brief Update all the computed fields based on the static values stored.
*
*******************************************************************************
*
* @param[inout] spm
* The sparse matrix to update.
*
*******************************************************************************/
void
* Compute the local expended field for multi-dofs
*/
if ( spm->dof > 0 ) {
spm->nexp = spm->n * spm->dof;
spm->nnzexp = spm->nnz * spm->dof * spm->dof;
}
else {
spm_int_t i, j, k, dofi, dofj, baseval;
spm_int_t *dofptr, *colptr, *rowptr;
baseval = spmFindBase( spm );
colptr = spm->colptr;
rowptr = spm->rowptr;
dofptr = spm->dofs;
spm->nexp = dofptr[ spm->n ] - baseval;
spm->nnzexp = 0;
switch(spm->fmttype)
{
/* Swap pointers to call CSC */
colptr = spm->rowptr;
rowptr = spm->colptr;
for(j=0; j<spm->n; j++, colptr++) {
dofj = dofptr[j+1] - dofptr[j];
for(k=colptr[0]; k<colptr[1]; k++, rowptr++) {
i = *rowptr - baseval;
dofi = dofptr[i+1] - dofptr[i];
spm->nnzexp += dofi * dofj;
}
}
break;
for(k=0; k<spm->nnz; k++, rowptr++, colptr++)
{
i = *rowptr - baseval;
j = *colptr - baseval;
dofi = dofptr[i+1] - dofptr[i];
dofj = dofptr[j+1] - dofptr[j];
spm->nnzexp += dofi * dofj;
}
}
}
/* TODO: add communicator */
spm->gN = spm->n;
spm->gnnz = spm->nnz;
spm->gNexp = spm->nexp;
spm->gnnzexp = spm->nnzexp;
}
/**
*******************************************************************************
*
* @brief Allocate the arrays of an spm structure with PaStiX internal
* allocations.
*
* This function must be called after initialization of the non-computed fields,
* and the call to spmUpdateComputedFields(). It allocates the colptr, rowptr,
* dof, and values arrays with PaStiX C malloc function. This is highly
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
* recommended to use this function when using PaStiX from Fortran.
*
*******************************************************************************
*
* @param[inout] spm
* The sparse matrix fr which the internal arrays needs to be allocated.
*
*******************************************************************************/
void
spmAlloc( spmatrix_t *spm )
{
spm_int_t colsize, rowsize, valsize, dofsize;
switch(spm->fmttype){
case SpmCSC:
colsize = spm->n + 1;
rowsize = spm->nnz;
valsize = spm->nnzexp;
dofsize = spm->n + 1;
break;
case SpmCSR:
colsize = spm->nnz;
rowsize = spm->n + 1;
valsize = spm->nnzexp;
dofsize = spm->n + 1;
break;
case SpmIJV:
default:
colsize = spm->nnz;
rowsize = spm->nnz;
valsize = spm->nnzexp;
dofsize = spm->n + 1;
}
spm->colptr = (spm_int_t*)malloc( colsize * sizeof(spm_int_t) );
spm->rowptr = (spm_int_t*)malloc( rowsize * sizeof(spm_int_t) );
if ( spm->dof < 1 ) {
spm->dofs = (spm_int_t*)malloc( dofsize * sizeof(spm_int_t) );
}
valsize = valsize * spm_size_of( spm->flttype );
spm->values = malloc(valsize);
}

Mathieu Faverge
committed
/**
*******************************************************************************
*
* @brief Cleanup the spm structure but do not free the spm pointer.

Mathieu Faverge
committed
*
*******************************************************************************
*

Mathieu Faverge
committed
*
*******************************************************************************/
void
}
if(spm->rowptr != NULL) {
free(spm->rowptr);
}
if(spm->loc2glob != NULL) {
free(spm->loc2glob);
}
if(spm->values != NULL) {
free(spm->values);
}
/**
*******************************************************************************

Mathieu Faverge
committed
*
* @brief Rebase the arrays of the spm to the given value.
* If the value is equal to the original base, then nothing is performed.
*
*******************************************************************************
*
* The sparse matrix to rebase.
*
* @param[in] baseval
* The base value to use in the graph (0 or 1).

Mathieu Faverge
committed
*
*******************************************************************************/

Mathieu Faverge
committed
{
/* Parameter checks */
if ( spm == NULL ) {

Mathieu Faverge
committed
}
if ( (spm->colptr == NULL) ||
(spm->rowptr == NULL) )
{
fprintf( stderr,"spmBase: spm pointer is not correctly initialized");
return;
}
if ( (baseval != 0) &&
(baseval != 1) )
{
fprintf( stderr,"spmBase: baseval is incorrect, must be 0 or 1");
return;
}
baseadj = baseval - spmFindBase( spm );
if (baseadj == 0)
assert( nnz == (spm->colptr[n] - spm->colptr[0]) );
for (i = 0; i <= n; i++) {
spm->colptr[i] += baseadj;
}
for (i = 0; i < nnz; i++) {
spm->rowptr[i] += baseadj;
}
break;
assert( nnz == (spm->rowptr[n] - spm->rowptr[0]) );
for (i = 0; i <= n; i++) {
spm->rowptr[i] += baseadj;
}
for (i = 0; i < nnz; i++) {
spm->colptr[i] += baseadj;
}
break;
for (i = 0; i < nnz; i++) {
spm->rowptr[i] += baseadj;
spm->colptr[i] += baseadj;
}
}
if (spm->loc2glob != NULL) {
for (i = 0; i < n; i++) {
spm->loc2glob[i] += baseadj;
}

Mathieu Faverge
committed
}

Mathieu Faverge
committed
if (spm->dofs != NULL) {

Mathieu Faverge
committed
spm->dofs[i] += baseadj;
}
}

Mathieu Faverge
committed
}
/**
*******************************************************************************
*
* @brief Search the base used in the spm structure.

Mathieu Faverge
committed
*
*******************************************************************************
*
* @param[in] spm
* The sparse matrix structure.
*
********************************************************************************
*
* @return The baseval used in the given sparse matrix structure.
*
*******************************************************************************/

Mathieu Faverge
committed
{

Mathieu Faverge
committed
/*
* Check the baseval, we consider that arrays are sorted by columns or rows
*/

Mathieu Faverge
committed
/*
* if not:
*/
if ( ( baseval != 0 ) &&
( baseval != 1 ) )
{

Mathieu Faverge
committed
baseval = spm->n;
tmp = spm->colptr;
for(i=0; i<spm->nnz; i++, tmp++){

Mathieu Faverge
committed
}
}
return baseval;
}
/**
*******************************************************************************
*
*******************************************************************************
* The sparse matrix structure to convert.
*
********************************************************************************
*
* @retval SPM_SUCCESS if the conversion happened successfully.
* @retval SPM_ERR_BADPARAMETER if one the parameter is incorrect.
* @retval SPM_ERR_NOTIMPLEMENTED if the case is not yet implemented.
*
*******************************************************************************/
int
{
if ( conversionTable[spm->fmttype][ofmttype][spm->flttype] ) {
if ( (spm->dof != 1) && (spm->flttype != SpmPattern) ) {
//fprintf( stderr, "spmConvert: Conversion of non unique dof not yet implemented\n");
return SPM_ERR_NOTIMPLEMENTED;
return conversionTable[spm->fmttype][ofmttype][spm->flttype]( spm );
}
else {
/**
*******************************************************************************
*
* @brief Convert the spm matrix into a dense matrix for test purpose.
*
*
*******************************************************************************
*
* The sparse matrix structure to convert.
*
********************************************************************************
*
* @return
* The pointer to the allocated array storing the dense version of the
* matrix.
*
*******************************************************************************/
void *
return d_spm2dense( spm );
default:
return NULL;
}
}
/**
*******************************************************************************
*
* @brief Compute the norm of the spm.
*
* Return the ntype norm of the sparse matrix spm.

Mathieu Faverge
committed
*

Mathieu Faverge
committed
* (

Mathieu Faverge
committed
* (

Mathieu Faverge
committed
* (

Mathieu Faverge
committed
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum
* of squares). Note that max(abs(spm(i,j))) is not a consistent matrix
* norm.
*
*******************************************************************************
*
* @param[in] ntype
* - SpmMaxNorm
* - SpmOneNorm
* - SpmInfNorm
* - SpmFrobeniusNorm

Mathieu Faverge
committed
*
* @param[in] spm
* The sparse matrix structure.
*
********************************************************************************
*
* @retval norm The norm described above. Note that for simplicity, even if the
* norm of single real or single complex matrix is computed with
* single precision, the returned norm is stored in double
* precision.
* @retval -1 If the floating point of the sparse matrix is undefined.

Mathieu Faverge
committed
*
*******************************************************************************/
double
spmNorm( spm_normtype_t ntype,
const spmatrix_t *spm )

Mathieu Faverge
committed
{

Mathieu Faverge
committed
if ( spm->flttype == SpmPattern ) {
return SPM_ERR_BADPARAMETER;
}
if ( spm->dof != 1 ) {
fprintf(stderr, "WARNING: spm expanded due to non implemented norm for non-expanded spm\n");
spmtmp = malloc( sizeof(spmatrix_t) );
spmExpand( spm, spmtmp );
norm = (double)s_spmNorm( ntype, spmtmp );
break;

Mathieu Faverge
committed
norm = d_spmNorm( ntype, spmtmp );
break;

Mathieu Faverge
committed
norm = (double)c_spmNorm( ntype, spmtmp );
break;

Mathieu Faverge
committed
norm = z_spmNorm( ntype, spmtmp );
break;

Mathieu Faverge
committed

Mathieu Faverge
committed
default:

Mathieu Faverge
committed
}
if ( spmtmp != spm ) {
spmExit( spmtmp );

Mathieu Faverge
committed
}
/**
*******************************************************************************
*
* @brief Sort the subarray of edges of each vertex in a CSC or CSR format.

Mathieu Faverge
committed
*
* @warning This function should NOT be called if dof is greater than 1.

Mathieu Faverge
committed
*
*******************************************************************************
*

Mathieu Faverge
committed
* On entry, the pointer to the sparse matrix structure.
* On exit, the same sparse matrix with subarrays of edges sorted by
* ascending order.
*
********************************************************************************
*
* @retval SPM_SUCCESS if the sort was called
* @retval SPM_ERR_BADPARAMETER if the given spm was incorrect.

Mathieu Faverge
committed
*
*******************************************************************************/
int

Mathieu Faverge
committed
{
if ( (spm->dof != 1) && (spm->flttype != SpmPattern) ) {
assert( 0 );
fprintf(stderr, "ERROR: spmSort should not be called with non expanded matrices including values\n");

Mathieu Faverge
committed
break;

Mathieu Faverge
committed
break;

Mathieu Faverge
committed
break;

Mathieu Faverge
committed
break;

Mathieu Faverge
committed
break;
default:

Mathieu Faverge
committed
}

Mathieu Faverge
committed
}
/**
*******************************************************************************
*
* @brief Merge multiple entries in a spm by summing their values together.
* The sparse matrix needs to be sorted first (see spmSort()).

Mathieu Faverge
committed
*
* @warning Not implemented for CSR and IJV format.

Mathieu Faverge
committed
*
*******************************************************************************
*

Mathieu Faverge
committed
* On entry, the pointer to the sparse matrix structure.
* On exit, the reduced sparse matrix of multiple entries were present
* in it. The multiple values for a same vertex are sum up together.
*
********************************************************************************
*
* @retval >=0 the number of vertices that were merged,
* @retval SPM_ERR_BADPARAMETER if the given spm was incorrect.

Mathieu Faverge
committed
*
*******************************************************************************/

Mathieu Faverge
committed
{
if ( (spm->dof < 1) && (spm->flttype != SpmPattern) ) {
assert( 0 );
fprintf(stderr, "Error: spmMergeDuplicate should not be called with non expanded matrices with variadic degrees of freedom and values\n" );

Mathieu Faverge
committed

Mathieu Faverge
committed

Mathieu Faverge
committed

Mathieu Faverge
committed

Mathieu Faverge
committed
default:

Mathieu Faverge
committed
}
}
/**
*******************************************************************************
*

Mathieu Faverge
committed
*
* This routine corrects the sparse matrix structure if it's pattern is not
* symmetric. It returns the new symmetric pattern with zeroes on the new
* entries.

Mathieu Faverge
committed
*
*******************************************************************************
*

Mathieu Faverge
committed
* On entry, the pointer to the sparse matrix structure.
* On exit, the same sparse matrix with extra entries that makes it
* pattern symmetric.

Mathieu Faverge
committed
*
********************************************************************************
*
* @retval >=0 the number of entries added to the matrix,
* @retval SPM_ERR_BADPARAMETER if the given spm was incorrect.

Mathieu Faverge
committed
*
*******************************************************************************/

Mathieu Faverge
committed
{
if ( (spm->dof != 1) && (spm->flttype != SpmPattern) ) {
assert( 0 );
fprintf(stderr, "ERROR: spmSymmetrize should not be called with non expanded matrices including values\n");

Mathieu Faverge
committed

Mathieu Faverge
committed

Mathieu Faverge
committed

Mathieu Faverge
committed

Mathieu Faverge
committed
default:

Mathieu Faverge
committed
}
}
/**
*******************************************************************************
*
* @brief Check the correctness of a spm.
*
* This routine initializes the sparse matrix to fit the PaStiX requirements. If
* needed, the format is changed to CSC, the duplicated vertices are merged
* together by summing their values; the graph is made symmetric for matrices
* with unsymmetric pattern, new values are set to 0. Only the lower part is
* kept for symmetric matrices.

Mathieu Faverge
committed
*
*******************************************************************************

Mathieu Faverge
committed
*

Mathieu Faverge
committed
* The pointer to the sparse matrix structure to check, and correct.
*
* On entry, an allocated structure to hold the corrected spm.
* On exit, holds the pointer to spm corrected.
*

Mathieu Faverge
committed
*******************************************************************************
*
* @return 0 if no changes have been made to the spm matrix.
* @return 1 if corrections have been applied to the in sparse matrix.

Mathieu Faverge
committed
*
*******************************************************************************/
int
spmCheckAndCorrect( const spmatrix_t *spm_in,
spmatrix_t *spm_out )

Mathieu Faverge
committed
{

Mathieu Faverge
committed
/*
* Let's work on a copy
* If multi-dof with variables, we need to expand the spm
*/
if ( (spm_in->dof != 1) && (spm_in->flttype != SpmPattern) ) {
fprintf(stderr, "spmCheckAndCorrect: spm is expanded due to multiple degrees of freedom\n");
newspm = malloc( sizeof(spmatrix_t) );
spmExpand( spm_in, newspm );
}
else {
newspm = spmCopy( spm_in );
/* PaStiX works on CSC matrices */
spmConvert( SpmCSC, newspm );

Mathieu Faverge
committed
/* Sort the rowptr for each column */

Mathieu Faverge
committed
/* Merge the duplicated entries by summing the values */

Mathieu Faverge
committed
if ( count > 0 ) {
fprintf(stderr, "spmCheckAndCorrect: %ld entries have been merged\n", (long)count );

Mathieu Faverge
committed
}

Mathieu Faverge
committed
* If the matrix is symmetric or hermitian, we keep only the upper or lower
* part, otherwise, we symmetrize the graph to get A+A^t, new values are set
* to 0.
*/

Mathieu Faverge
committed
if ( count > 0 ) {
fprintf(stderr, "spmCheckAndCorrect: %ld entries have been added for symmetry\n", (long)count );

Mathieu Faverge
committed
}
}
else {

Mathieu Faverge
committed
}
spmUpdateComputedFields( newspm );

Mathieu Faverge
committed
* Check if we return the new one, or the original one because no changes
* have been made
*/
if (( spm_in->fmttype != newspm->fmttype ) ||
( spm_in->nnzexp != newspm->nnzexp ) )

Mathieu Faverge
committed
{
memcpy( spm_out, newspm, sizeof(spmatrix_t) );
free( newspm );
return 1;

Mathieu Faverge
committed
}
else {
memcpy( spm_out, spm_in, sizeof(spmatrix_t) );

Mathieu Faverge
committed
}
}
/**
*******************************************************************************
*

Mathieu Faverge
committed
*
* Duplicate the spm data structure given as parameter. All new arrays are
* allocated and copied from the original matrix. Both matrices need to be
* freed.

Mathieu Faverge
committed
*
*******************************************************************************
*
* @param[in] spm
* The sparse matrix to copy.
*
*******************************************************************************
*
* @return
* The copy of the sparse matrix.
*
*******************************************************************************/

Mathieu Faverge
committed
{
spmatrix_t *newspm = (spmatrix_t*)malloc(sizeof(spmatrix_t));
spm_int_t colsize, rowsize, valsize, dofsize;

Mathieu Faverge
committed

Mathieu Faverge
committed
colsize = spm->n + 1;
rowsize = spm->nnz;
valsize = spm->nnzexp;
dofsize = spm->n + 1;
break;
colsize = spm->nnz;
rowsize = spm->n + 1;
valsize = spm->nnzexp;
dofsize = spm->n + 1;
break;
colsize = spm->nnz;
rowsize = spm->nnz;
valsize = spm->nnzexp;
dofsize = spm->n + 1;
}

Mathieu Faverge
committed
if(spm->colptr != NULL) {
newspm->colptr = (spm_int_t*)malloc( colsize * sizeof(spm_int_t) );
memcpy( newspm->colptr, spm->colptr, colsize * sizeof(spm_int_t) );

Mathieu Faverge
committed
}
if(spm->rowptr != NULL) {
newspm->rowptr = (spm_int_t*)malloc( rowsize * sizeof(spm_int_t) );
memcpy( newspm->rowptr, spm->rowptr, rowsize * sizeof(spm_int_t) );

Mathieu Faverge
committed
}
if(spm->loc2glob != NULL) {
newspm->loc2glob = (spm_int_t*)malloc( dofsize * sizeof(spm_int_t) );
memcpy( newspm->loc2glob, spm->loc2glob, dofsize * sizeof(spm_int_t) );
newspm->dofs = (spm_int_t*)malloc( dofsize * sizeof(spm_int_t) );
memcpy( newspm->dofs, spm->dofs, dofsize * sizeof(spm_int_t) );

Mathieu Faverge
committed
}
if(spm->values != NULL) {

Mathieu Faverge
committed
newspm->values = malloc(valsize);

Mathieu Faverge
committed
}

Mathieu Faverge
committed
return newspm;
}
/**
*******************************************************************************
*
* @brief Print basic informations about the spm matrix into a given stream.
*
*******************************************************************************
*
* @param[in] spm
* The sparse matrix to print.
*
* @param[inout] stream
* Stream to print the spm matrix. stdout is used if stream == NULL.
*
*******************************************************************************/
void
char *mtxtypestr[4] = { "General", "Symmetric", "Hermitian", "Incorrect" };
char *flttypestr[7] = { "Pattern", "", "Float", "Double", "Complex32", "Complex64", "Incorrect" };
char *fmttypestr[4] = { "CSC", "CSR", "IJV", "Incorrect" };
int mtxtype = spm->mtxtype - SpmGeneral;
int flttype = spm->flttype - SpmPattern;
int fmttype = spm->fmttype - SpmCSC;
if (stream == NULL) {
stream = stdout;
}
mtxtype = (mtxtype > 2 || mtxtype < 0) ? 3 : mtxtype;
flttype = (flttype > 5 || flttype < 0) ? 6 : flttype;
fmttype = (fmttype > 2 || fmttype < 0) ? 3 : fmttype;
fprintf(stream,
" Matrix type: %s\n"
" Arithmetic: %s\n"
" Format: %s\n"
" N: %ld\n"
" nnz: %ld\n",
mtxtypestr[mtxtype],
flttypestr[flttype],
fmttypestr[fmttype],
if ( spm->dof != 1 ) {
if ( spm->dof > 1 ) {
fprintf(stream,
" Dof: %ld\n",
}
else {
fprintf(stream,
" Dof: Variadic\n" );
}
fprintf(stream,
" N expanded: %ld\n"
" NNZ expanded: %ld\n",
fflush( stream );
/**
*******************************************************************************
*
* @brief Print an spm matrix into into a given file.
*
*******************************************************************************
*
* @param[in] spm
* @param[in] stream
* File to print the spm matrix. stdout, if stream == NULL.
*******************************************************************************/
void
FILE *stream )
if (stream == NULL) {
stream = stdout;
}
s_spmPrint(stream, spm);
c_spmPrint(stream, spm);
z_spmPrint(stream, spm);
d_spmPrint(stream, spm);
/**
*******************************************************************************
*
* @brief Expand a multi-dof spm matrix into an spm with constant dof set to 1.
*
* Duplicate the spm data structure given as parameter. All new arrays are
* allocated and copied from the original matrix. Both matrices need to be
* freed.
*
*******************************************************************************
*
* @param[in] spm
* The sparse matrix to copy.
*
*******************************************************************************
*
* @return
* The copy of the sparse matrix.
*
*******************************************************************************/
void
spmExpand( const spmatrix_t* spm_in, spmatrix_t* spm_out )
switch(spm_in->flttype)
p_spmExpand(spm_in, spm_out);
s_spmExpand(spm_in, spm_out);
c_spmExpand(spm_in, spm_out);
z_spmExpand(spm_in, spm_out);
d_spmExpand(spm_in, spm_out);

Mathieu Faverge
committed
/**
*******************************************************************************
*
*
* y = alpha * op(A) * x + beta * y, where op(A) is one of
*
* op( A ) = A or op( A ) = A' or op( A ) = conjg( A' )
*
* alpha and beta are scalars, and x and y are vectors.

Mathieu Faverge
committed
*
*******************************************************************************
*
* Specifies whether the matrix spm is transposed, not transposed or conjugate transposed:
* - SpmTrans
* - SpmNoTrans
* - SpmConjTrans

Mathieu Faverge
committed
*
* @param[in] alpha
* alpha specifies the scalar alpha.
*
* @param[in] spm
*
* @param[in] x
* The vector x.
*
* @param[in] beta
* beta specifies the scalar beta.
*
* The vector y.
*
*******************************************************************************
*
* @retval SPM_SUCCESS if the y vector has been computed successfully,
* @retval SPM_ERR_BADPARAMETER otherwise.

Mathieu Faverge
committed
*
*******************************************************************************/
int
spmMatVec( spm_trans_t trans,
double alpha,
const void *x,
double beta,
void *y )

Mathieu Faverge
committed
{
spmatrix_t *espm = (spmatrix_t*)spm;
int rc = SPM_SUCCESS;
if ( (spm->fmttype != SpmCSC) && (spm->fmttype != SpmCSR) && (spm->fmttype != SpmIJV) ) {
if ( spm->flttype == SpmPattern ) {
return SPM_ERR_BADPARAMETER;
}
espm = malloc( sizeof(spmatrix_t) );
spmExpand( spm, espm );
rc = spm_sspmv( trans, alpha, espm, x, 1, beta, y, 1 );
rc = spm_cspmv( trans, alpha, espm, x, 1, beta, y, 1 );
rc = spm_zspmv( trans, alpha, espm, x, 1, beta, y, 1 );

Mathieu Faverge
committed
default:
rc = spm_dspmv( trans, alpha, espm, x, 1, beta, y, 1 );
}
if ( spm != espm ) {
spmExit( espm );
free(espm);

Mathieu Faverge
committed
}

Mathieu Faverge
committed
}
/**
*******************************************************************************
*
* @brief Compute a matrix-matrix product.
*
* y = alpha * op(A) * B + beta * C
*
* where op(A) is one of:
*
* op( A ) = A or op( A ) = A' or op( A ) = conjg( A' )
*
* alpha and beta are scalars, and x and y are vectors.
*
*******************************************************************************
*
* @param[in] trans
* Specifies whether the matrix spm is transposed, not transposed or conjugate transposed:
* - SpmTrans
* - SpmNoTrans
* - SpmConjTrans
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
*
* @param[in] n
* The number of columns of the matrices B and C.
*
* @param[in] alpha
* alpha specifies the scalar alpha.
*
* @param[in] A
* The square sparse matrix A
*
* @param[in] B
* The matrix B of size ldb-by-n
*
* @param[in] ldb
* The leading dimension of the matrix B. ldb >= A->n
*
* @param[in] beta
* beta specifies the scalar beta.
*
* @param[inout] C
* The matrix C of size ldc-by-n
*
* @param[in] ldc
* The leading dimension of the matrix C. ldc >= A->n
*
*******************************************************************************
*
* @retval SPM_SUCCESS if the y vector has been computed successfully,
* @retval SPM_ERR_BADPARAMETER otherwise.
*
*******************************************************************************/
int
double alpha,
const spmatrix_t *A,
const void *B,
spmatrix_t *espm = (spmatrix_t*)A;
int rc = SPM_SUCCESS;
espm = malloc( sizeof(spmatrix_t) );
spmExpand( A, espm );
rc = spm_sspmm( SpmLeft, trans, SpmNoTrans, n, alpha, espm, B, ldb, beta, C, ldc );
rc = spm_cspmm( SpmLeft, trans, SpmNoTrans, n, alpha, espm, B, ldb, beta, C, ldc );
rc = spm_zspmm( SpmLeft, trans, SpmNoTrans, n, alpha, espm, B, ldb, beta, C, ldc );
rc = spm_dspmm( SpmLeft, trans, SpmNoTrans, n, alpha, espm, B, ldb, beta, C, ldc );
break;
}
if ( A != espm ) {
spmExit( espm );
free(espm);
}
return rc;
}

Mathieu Faverge
committed
/**
*******************************************************************************
*
* @brief Generate right hand side vectors associated to a given matrix.
* The vectors can be initialized randomly or to get a specific solution.

Mathieu Faverge
committed
*
*******************************************************************************
*
* @param[in] type
* Defines how to compute the vector b.
* - SpmRhsOne: b is computed such that x = 1 [ + I ]
* - SpmRhsI: b is computed such that x = i [ + i * I ]
* - SpmRhsRndX: b is computed by matrix-vector product, such that

Mathieu Faverge
committed
* is a random vector in the range [-0.5, 0.5]
* - SpmRhsRndB: b is computed randomly and x is not computed.

Mathieu Faverge
committed
*
* @param[in] nrhs
* Defines the number of right hand side that must be generated.
*
* @param[in] spm
* The sparse matrix uses to generate the right hand side, and the
* solution of the full problem.
*
* @param[out] x
* On exit, if x != NULL, then the x vector(s) generated to compute b
* is returned. Must be of size at least ldx * spm->n.
*
* @param[in] ldx
* Defines the leading dimension of x when multiple right hand sides
* are available. ldx >= spm->n.
*

Mathieu Faverge
committed
* b must be an allocated matrix of size at least ldb * nrhs.
* On exit, b is initialized as defined by the type parameter.
*
* @param[in] ldb
* Defines the leading dimension of b when multiple right hand sides
* are available. ldb >= spm->n.
*
*******************************************************************************
*
* @retval SPM_SUCCESS if the b vector has been computed successfully,
* @retval SPM_ERR_BADPARAMETER otherwise.

Mathieu Faverge
committed
*
*******************************************************************************/
int
spmGenRHS( spm_rhstype_t type, spm_int_t nrhs,
const spmatrix_t *spm,
void *x, spm_int_t ldx,
void *b, spm_int_t ldb )

Mathieu Faverge
committed
{
static int (*ptrfunc[4])(spm_rhstype_t, int,
const spmatrix_t *,

Mathieu Faverge
committed
void *, int, void *, int) =
{
s_spmGenRHS, d_spmGenRHS, c_spmGenRHS, z_spmGenRHS
};

Mathieu Faverge
committed
if ( (id < 0) || (id > 3) ) {

Mathieu Faverge
committed
}
else {
return ptrfunc[id](type, nrhs, spm, x, ldx, b, ldb );
}
}
/**
*******************************************************************************
*
* @brief Check the backward error, and the forward error if x0 is provided.

Mathieu Faverge
committed
*
*******************************************************************************
*

Mathieu Faverge
committed
* @param[in] eps
* The epsilon threshold used for the refinement step. -1. to use the
* machine precision.
*

Mathieu Faverge
committed
* @param[in] nrhs
* Defines the number of right hand side that must be generated.
*
* @param[in] spm
* The sparse matrix used to generate the right hand side, and the

Mathieu Faverge
committed
* solution of the full problem.
*

Mathieu Faverge
committed
* If x0 != NULL, the forward error is computed.

Mathieu Faverge
committed
*
* @param[in] ldx0
* Defines the leading dimension of x0 when multiple right hand sides
* are available. ldx0 >= spm->n.
*

Mathieu Faverge
committed
* b is a matrix of size at least ldb * nrhs.
* On exit, b stores Ax-b.
*
* @param[in] ldb
* Defines the leading dimension of b when multiple right hand sides
* are available. ldb >= spm->n.
*
* @param[in] x
* Contains the solution computed by the solver.
*
* @param[in] ldx
* Defines the leading dimension of x when multiple right hand sides
* are available. ldx >= spm->n.
*
*******************************************************************************
*
* @retval SPM_SUCCESS if the tests are succesfull
* @retval SPM_ERR_BADPARAMETER if the input matrix is incorrect
* @retval 1, if one of the test failed

Mathieu Faverge
committed
*
*******************************************************************************/
int
spmCheckAxb( double eps, spm_int_t nrhs,
const spmatrix_t *spm,
void *x0, spm_int_t ldx0,
void *b, spm_int_t ldb,
const void *x, spm_int_t ldx )

Mathieu Faverge
committed
{
static int (*ptrfunc[4])( double, int, const spmatrix_t *,

Mathieu Faverge
committed
void *, int, void *, int, const void *, int ) =

Mathieu Faverge
committed
{
s_spmCheckAxb, d_spmCheckAxb, c_spmCheckAxb, z_spmCheckAxb
};

Mathieu Faverge
committed
if ( (id < 0) || (id > 3) ) {

Mathieu Faverge
committed
}
else {

Mathieu Faverge
committed
return ptrfunc[id]( eps, nrhs, spm, x0, ldx0, b, ldb, x, ldx );

Mathieu Faverge
committed
}
}
/**
*******************************************************************************
*
*
*******************************************************************************
*
* @param[in] alpha
* The scaling parameter.
*
* The sparse matrix to scal.
*
*******************************************************************************/
void
{
switch(spm->flttype)
{
default:
}
}
PICHON Gregoire
committed
/**
*******************************************************************************
*
* @brief Scale a vector according to the spm type.
*
* x = alpha * x
*
*******************************************************************************
*
* Datatype of the elements in the vector that must be:
* @arg SpmFloat
* @arg SpmDouble
* @arg SpmComplex32
* @arg SpmComplex64
* Number of elements in the input vectors
* The scaling parameter.
* @param[inout] x
* The vector to scal of size ( 1 + (n-1) * abs(incx) ), and of type
* defined by flt.
* Storage spacing between elements of x.
*
*******************************************************************************/
void
cblas_sscal( n, (float)alpha, x, incx );
cblas_csscal( n, (float)alpha, x, incx );
cblas_zdscal( n, alpha, x, incx );
cblas_dscal( n, alpha, x, incx );