Mentions légales du service

Skip to content
Snippets Groups Projects
csc.c 23.8 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
/**
 *
 * @file csc.c
 *
 *  PaStiX csc routines
 *  PaStiX is a software package provided by Inria Bordeaux - Sud-Ouest,
 *  LaBRI, University of Bordeaux 1 and IPB.
 *
 * @version 5.1.0
 * @author Xavier Lacoste
 * @author Pierre Ramet
 * @author Mathieu Faverge
 * @date 2013-06-24
 *
 **/
#include "common.h"
#include "csc.h"

#include "z_spm.h"
#include "c_spm.h"
#include "d_spm.h"
#include "s_spm.h"
#include "p_spm.h"

static int (*conversionTable[3][3][6])(pastix_csc_t*) = {
    /* From CSC */
    {{ NULL, NULL, NULL, NULL, NULL, NULL },
     { p_spmConvertCSC2CSR,
       NULL,
       s_spmConvertCSC2CSR,
       d_spmConvertCSC2CSR,
       c_spmConvertCSC2CSR,
       z_spmConvertCSC2CSR },
     { p_spmConvertCSC2IJV,
       NULL,
       s_spmConvertCSC2IJV,
       d_spmConvertCSC2IJV,
       c_spmConvertCSC2IJV,
       z_spmConvertCSC2IJV }},
    /* From CSR */
    {{ p_spmConvertCSR2CSC,
       NULL,
       s_spmConvertCSR2CSC,
       d_spmConvertCSR2CSC,
       c_spmConvertCSR2CSC,
       z_spmConvertCSR2CSC },
     { NULL, NULL, NULL, NULL, NULL, NULL },
     { p_spmConvertCSR2IJV,
       NULL,
       s_spmConvertCSR2IJV,
       d_spmConvertCSR2IJV,
       c_spmConvertCSR2IJV,
       z_spmConvertCSR2IJV }},
    /* From IJV */
    {{ p_spmConvertIJV2CSC,
       NULL,
       s_spmConvertIJV2CSC,
       d_spmConvertIJV2CSC,
       c_spmConvertIJV2CSC,
       z_spmConvertIJV2CSC },
     { p_spmConvertIJV2CSR,
       NULL,
       s_spmConvertIJV2CSR,
       d_spmConvertIJV2CSR,
       c_spmConvertIJV2CSR,
       z_spmConvertIJV2CSR },
     { NULL, NULL, NULL, NULL, NULL, NULL }}
};



/**
 *******************************************************************************
 *
 * @ingroup pastix_spm
 *
 * spmConvert - Convert the storage format of the given sparse matrix from any
 * of the following format: PastixCSC, PastixCSR, or PastixIJV to one of these.
 *
 *******************************************************************************
 *
 * @param[in] ofmttype
 *          The output format of the sparse matrix. It might be PastixCSC,
 *          PastixCSR, or PastixIJV.
 *
 * @param[in,out] spm
 *          The sparse matrix structure to convert.
 *
 ********************************************************************************
 *
 * @return
 *        \retval PASTIX_SUCCESS if the conversion happened successfuly
 *        \retval PASTIX_ERR_BADPARAMETER if one the parameter is incorrect.
 *
 *******************************************************************************/
int
spmConvert( int ofmttype, pastix_csc_t *ospm )
{
    if ( conversionTable[ospm->fmttype][ofmttype][ospm->flttype] ) {
        return conversionTable[ospm->fmttype][ofmttype][ospm->flttype]( ospm );
    }
    else {
        return PASTIX_SUCCESS;
    }
}

/**
 *******************************************************************************
 *
 * @ingroup pastix_spm
 *
 * spmFindBase - Search the base used in the spm structure given as parameter.
 *
 *******************************************************************************
 *
 * @param[in] spm
 *          The sparse matrix structure.
 *
 ********************************************************************************
 *
 * @return  The baseval used in the given sparse matrix structure.
 *
 *******************************************************************************/
pastix_int_t
spmFindBase( const pastix_csc_t *spm )
{

    pastix_int_t i, *tmp, baseval;

    /*
     * Check the baseval, we consider that arrays are sorted by columns or rows
     */
    baseval = pastix_imin( *(spm->colptr), *(spm->rowptr) );
    /*
     * if not:
     */
    if ( ( baseval != 0 ) &&
         ( baseval != 1 ) )
    {
        baseval = spm->n;
        tmp = spm->colptr;
        for(i=0; i<spm->nnz; i++, tmp++){
            baseval = pastix_imin( *tmp, baseval );
        }
    }

    return baseval;
}

/**
 *******************************************************************************
 *
 * @ingroup pastix_spm
 *
 * spmNorm - Return the ntype norm of the sparse matrix spm.
 *
 *     spmNorm = ( max(abs(spm(i,j))), NORM = PastixMaxNorm
 *               (
 *               ( norm1(spm),         NORM = PastixOneNorm
 *               (
 *               ( normI(spm),         NORM = PastixInfNorm
 *               (
 *               ( normF(spm),         NORM = PastixFrobeniusNorm
 *
 *  where norm1 denotes the one norm of a matrix (maximum column sum),
 *  normI denotes the infinity norm of a matrix (maximum row sum) and
 *  normF denotes the Frobenius norm of a matrix (square root of sum
 *  of squares). Note that max(abs(spm(i,j))) is not a consistent matrix
 *  norm.
 *
 *******************************************************************************
 *
 * @param[in] ntype
 *          = PastixMaxNorm: Max norm
 *          = PastixOneNorm: One norm
 *          = PastixInfNorm: Infinity norm
 *          = PastixFrobeniusNorm: Frobenius norm
 *
 * @param[in] spm
 *          The sparse matrix structure.
 *
 ********************************************************************************
 *
 * @return
 *          \retval the norm described above. Note that for simplicity, even if
 *          the norm of single real or single complex matrix is computed with
 *          single precision, the returned norm is stored in double precision
 *          number.
 *          \retval -1., if the floating point of the sparse matrix is
 *          undefined.
 *
 *******************************************************************************/
double
spmNorm( int ntype,
         const pastix_csc_t *csc )
{
    double tmp;

    switch (csc->flttype) {
    case PastixFloat:
        tmp = (double)s_spmNorm( ntype, csc );
        return tmp;

    case PastixDouble:
        return d_spmNorm( ntype, csc );

    case PastixComplex32:
        tmp = (double)c_spmNorm( ntype, csc );
        return tmp;

    case PastixComplex64:
        return z_spmNorm( ntype, csc );

    default:
        return -1.;
    }
}

/**
 *******************************************************************************
 *
 * @ingroup pastix_spm
 *
 * spmSort - This routine sorts the subarray of edges of each vertex in a
 * centralized spm stored in CSC or CSR format. Nothing is performed if IJV
 * format is used.
 *
 * WARNING: This function should NOT be called if dof is greater than 1.
 *
 *******************************************************************************
 *
 * @param[in,out] spm
 *          On entry, the pointer to the sparse matrix structure.
 *          On exit, the same sparse matrix with subarrays of edges sorted by
 *          ascending order.
 *
 ********************************************************************************
 *
 * @return
 *          \retval PASTIX_SUCCESS if the sort was called
 *          \retval PASTIX_ERR_BADPARAMETER, if the given spm was incorrect.
 *
 *******************************************************************************/
int
spmSort( pastix_csc_t *csc )
{
    switch (csc->flttype) {
    case PastixPattern:
        p_spmSort( csc );
        break;
    case PastixFloat:
        s_spmSort( csc );
        break;
    case PastixDouble:
        d_spmSort( csc );
        break;
    case PastixComplex32:
        c_spmSort( csc );
        break;
    case PastixComplex64:
        z_spmSort( csc );
        break;
    default:
        return PASTIX_ERR_BADPARAMETER;
    }
    return PASTIX_SUCCESS;
}

/**
 *******************************************************************************
 *
 * @ingroup pastix_spm
 *
 * spmMergeDuplicate - This routine merge the multiple entries in a sparse
 * matrix by suming their values together. The sparse matrix needs to be sorted
 * first (see spmSort()).
 *
 * WARNING: Not implemented for CSR and IJV format.
 *
 *******************************************************************************
 *
 * @param[in,out] spm
 *          On entry, the pointer to the sparse matrix structure.
 *          On exit, the reduced sparse matrix of multiple entries were present
 *          in it. The multiple values for a same vertex are sum up together.
 *
 ********************************************************************************
 *
 * @return
 *          \retval If >=0, the number of vertices that were merged
 *          \retval PASTIX_ERR_BADPARAMETER, if the given spm was incorrect.
 *
 *******************************************************************************/
pastix_int_t
spmMergeDuplicate( pastix_csc_t *csc )
{
    switch (csc->flttype) {
    case PastixPattern:
        return p_spmMergeDuplicate( csc );

    case PastixFloat:
        return s_spmMergeDuplicate( csc );

    case PastixDouble:
        return d_spmMergeDuplicate( csc );

    case PastixComplex32:
        return c_spmMergeDuplicate( csc );

    case PastixComplex64:
        return z_spmMergeDuplicate( csc );

    default:
        return PASTIX_ERR_BADPARAMETER;
    }
}

/**
 *******************************************************************************
 *
 * @ingroup pastix_spm
 *
 * spmSymmetrize - This routine merge the multiple entries in a sparse
 * matrix by suming their values together. The sparse matrix needs to be sorted
 * first (see spmSort()).
 *
 * WARNING: Not implemented for CSR and IJV format.
 *
 *******************************************************************************
 *
 * @param[in,out] spm
 *          On entry, the pointer to the sparse matrix structure.
 *          On exit, the reduced sparse matrix of multiple entries were present
 *          in it. The multiple values for a same vertex are sum up together.
 *
 ********************************************************************************
 *
 * @return
 *          \retval If >=0, the number of vertices that were merged
 *          \retval PASTIX_ERR_BADPARAMETER, if the given spm was incorrect.
 *
 *******************************************************************************/
pastix_int_t
spmSymmetrize( pastix_csc_t *csc )
{
    switch (csc->flttype) {
    case PastixPattern:
        return p_spmSymmetrize( csc );

    case PastixFloat:
        return s_spmSymmetrize( csc );

    case PastixDouble:
        return d_spmSymmetrize( csc );

    case PastixComplex32:
        return c_spmSymmetrize( csc );

    case PastixComplex64:
        return z_spmSymmetrize( csc );

    default:
        return PASTIX_ERR_BADPARAMETER;
    }
}

/**
 *******************************************************************************
 *
 * @ingroup pastix_spm
 *
 * spmCheckAndCorrect - This routine initializes the sparse matrix to fit the
 * PaStiX requirements. If needed, the format is changed to CSC, the duplicated
 * vertices are merged together by summing their values; the graph is made
 * symmetric for matrices with unsymmetric pattern, new values are set to 0.;
 * Only the lower part is kept for the symmetric matrices.
 *
 * On exit, if no changes have been made, the initial sparse matrix is returned,
 * otherwise a copy of the sparse matrix structured fixed to meet the PaStiX
 * requirements is returned.
 *
 *******************************************************************************
 *
 * @param[in,out] spm
 *          The pointer to the sparse matrix structure to check, and correct.
 *          On exit, the subarrays related to each column might have been sorted
 *          by ascending order.
 *
 *******************************************************************************
 *
 * @return
 *          \retval If no modifications were made to the initial matrix
 *                  structure, the one given as parameter is returned
 *          \retval Otherwise, the news sparse matrix structure is returned. It
 *                  must be destroyed with spmExit() and a free of the returned
 *                  pointer.
 *
 *******************************************************************************/
pastix_csc_t *
spmCheckAndCorrect( pastix_csc_t *csc )
{
    pastix_csc_t *newcsc = NULL;
    pastix_int_t count;

    /* Let's work on a copy */
    newcsc = spmCopy( csc );

    /* PaStiX works on CSC matrices */
    spmConvert( PastixCSC, newcsc );

    /* Sort the rowptr for each column */
    spmSort( newcsc );

    /* Merge the duplicated entries by summing the values */
    count = spmMergeDuplicate( newcsc );
    if ( count > 0 ) {
        fprintf(stderr, "spmCheckAndCorrect: %ld entries have been merged\n", (int64_t)count );
    }

    /**
     * If the matrix is symmetric or hermitian, we keep only the upper or lower
     * part, otherwise, we symmetrize the graph to get A+A^t, new values are set
     * to 0.
     */
    if ( newcsc->mtxtype == PastixGeneral ) {
        count = spmSymmetrize( newcsc );
        if ( count > 0 ) {
            fprintf(stderr, "spmCheckAndCorrect: %ld entries have been added for symmetry\n", (int64_t)count );
        }
    }
    else {
        //spmToLower( newcsc );
    }

    /**
     * Check if we return the new one, or the original one because no changes
     * have been made
     */
    if (( csc->fmttype != newcsc->fmttype ) ||
        ( csc->nnz     != newcsc->nnz     ) )
    {
        return newcsc;
    }
    else {
        spmExit( newcsc );
        free(newcsc);
        return (pastix_csc_t*)csc;
    }
}

/**
 *******************************************************************************
 *
 * @ingroup pastix_spm
 *
 * spmExit - Free the spm structure given as parameter
 *
 *******************************************************************************
 *
 * @param[in,out] spm
 *          The sparse matrix to free.
 *
 *******************************************************************************/
void
spmExit( pastix_csc_t *spm )
{
    if(spm->colptr != NULL)
        memFree_null(spm->colptr);
    if(spm->rowptr != NULL)
        memFree_null(spm->rowptr);
    if(spm->loc2glob != NULL)
        memFree_null(spm->loc2glob);
    if(spm->values != NULL)
        memFree_null(spm->values);
}

/**
 *******************************************************************************
 *
 * @ingroup pastix_spm
 *
 * spmCopy - Duplicate the spm data structure given as parameter.
 *
 *******************************************************************************
 *
 * @param[in] spm
 *          The sparse matrix to copy.
 *
 *******************************************************************************
 *
 * @return
 *          The copy of the sparse matrix.
 *
 *******************************************************************************/
pastix_csc_t *
spmCopy( const pastix_csc_t *spm )
{
    pastix_csc_t *newspm = (pastix_csc_t*)malloc(sizeof(pastix_csc_t));

    memcpy( newspm, spm, sizeof(pastix_csc_t));

    if(spm->colptr != NULL) {
        newspm->colptr = (pastix_int_t*)malloc((spm->n+1) * sizeof(pastix_int_t));
        memcpy( newspm->colptr, spm->colptr, (spm->n+1) * sizeof(pastix_int_t));
    }
    if(spm->rowptr != NULL) {
        newspm->rowptr = (pastix_int_t*)malloc(spm->nnz * sizeof(pastix_int_t));
        memcpy( newspm->rowptr, spm->rowptr, spm->nnz * sizeof(pastix_int_t));
    }
    if(spm->loc2glob != NULL) {
        newspm->loc2glob = (pastix_int_t*)malloc(spm->n * sizeof(pastix_int_t));
        memcpy( newspm->loc2glob, spm->loc2glob, spm->n * sizeof(pastix_int_t));
    }
    if(spm->values != NULL) {
        size_t valsize = spm->nnz * pastix_size_of( spm->flttype );
        newspm->values = malloc(valsize);
        memcpy( newspm->values, spm->values, valsize);
    }
    return newspm;
}

/**
 *******************************************************************************
 *
 * @ingroup pastix_spm
 *
 * spmBase - Rebase the spm to the given value.
 *
 *******************************************************************************
 *
 * @param[in,out] spm
 *          The sparse matrix to rebase.
 *
 * @param[in] baseval
 *          The base value to use in the graph (0 or 1).
 *
 *******************************************************************************/
void spmBase( pastix_csc_t *spm,
              int           baseval )
{
    pastix_int_t baseadj;
    pastix_int_t i, n, nnz;

    /* Parameter checks */
    if ( spm == NULL ) {
        errorPrint("spmBase: spm pointer is NULL");
        return;
    }
    if ( (spm->colptr == NULL) ||
         (spm->rowptr == NULL) )
    {
        errorPrint("spmBase: spm pointer is not correctly initialized");
        return;
    }
    if ( (baseval != 0) &&
         (baseval != 1) )
    {
        errorPrint("spmBase: baseval is incorrect, must be 0 or 1");
        return;
    }

    baseadj = baseval - spmFindBase( spm );
    if (baseadj == 0)
	return;

    n   = spm->n;
    nnz = spm->colptr[n] - spm->colptr[0];

    for (i = 0; i <= n; i++) {
        spm->colptr[i] += baseadj;
    }
    for (i = 0; i < nnz; i++) {
        spm->rowptr[i] += baseadj;
    }

    if (spm->loc2glob != NULL) {
        for (i = 0; i < n; i++) {
            spm->loc2glob[i] += baseadj;
        }
    }
    return;
}


/**
 * TODO: Maybe we should move down the cast of the parameters to the lowest
 * functions, and simplify this one to have identical calls to all subfunction
 */
int
spmMatVec(      int           trans,
          const void         *alpha,
          const pastix_csc_t *csc,
          const void         *x,
          const void         *beta,
                void         *y )
{
    switch (csc->mtxtype) {
    case PastixHermitian:
        switch (csc->flttype) {
        case PastixFloat:
            return s_spmSyCSCv( *((const float*)alpha), csc, (const float*)x, *((const float*)beta), (float*)y );
        case PastixComplex32:
            return c_spmHeCSCv( *((const pastix_complex32_t*)alpha), csc, (const pastix_complex32_t*)x, *((const pastix_complex32_t*)beta), (pastix_complex32_t*)y );
        case PastixComplex64:
            return z_spmHeCSCv( *((const pastix_complex64_t*)alpha), csc, (const pastix_complex64_t*)x, *((const pastix_complex64_t*)beta), (pastix_complex64_t*)y );
        case PastixDouble:
        default:
            return d_spmSyCSCv( *((const double*)alpha), csc, (const double*)x, *((const double*)beta), (double*)y );
        }
    case PastixSymmetric:
        switch (csc->flttype) {
        case PastixFloat:
            return s_spmSyCSCv( *((const float*)alpha), csc, (const float*)x, *((const float*)beta), (float*)y );
        case PastixComplex32:
            return c_spmSyCSCv( *((const pastix_complex32_t*)alpha), csc, (const pastix_complex32_t*)x, *((const pastix_complex32_t*)beta), (pastix_complex32_t*)y );
        case PastixComplex64:
            return z_spmSyCSCv( *((const pastix_complex64_t*)alpha), csc, (const pastix_complex64_t*)x, *((const pastix_complex64_t*)beta), (pastix_complex64_t*)y );
        case PastixDouble:
        default:
            return d_spmSyCSCv( *((const double*)alpha), csc, (const double*)x, *((const double*)beta), (double*)y );
        }
    case PastixGeneral:
    default:
        switch (csc->flttype) {
        case PastixFloat:
            return s_spmGeCSCv( trans, *((const float*)alpha), csc, (const float*)x, *((const float*)beta), (float*)y );
        case PastixComplex32:
            return c_spmGeCSCv( trans, *((const pastix_complex32_t*)alpha), csc, (const pastix_complex32_t*)x, *((const pastix_complex32_t*)beta), (pastix_complex32_t*)y );
        case PastixComplex64:
            return z_spmGeCSCv( trans, *((const pastix_complex64_t*)alpha), csc, (const pastix_complex64_t*)x, *((const pastix_complex64_t*)beta), (pastix_complex64_t*)y );
        case PastixDouble:
        default:
            return d_spmGeCSCv( trans, *((const double*)alpha), csc, (const double*)x, *((const double*)beta), (double*)y );
        }
    }
}

/**
 *******************************************************************************
 *
 * @ingroup pastix_csc
 *
 * z_spmGenRHS - Generate nrhs right hand side vectors associated to a given
 * matrix to test a problem with a solver.
 *
 *******************************************************************************
 *
 * @param[in] type
 *          Defines how to compute the vector b.
 *          - PastixRhsOne:  b is computed such that x = 1 [ + I ]
 *          - PastixRhsI:    b is computed such that x = i [ + i * I ]
 *          - PastixRhsRndX: b is computed by matrix-vector product, such that
 *            is a random vector in the range [-0.5, 0.5]
 *          - PastixRhsRndB: b is computed randomly and x is not computed.
 *
 * @param[in] nrhs
 *          Defines the number of right hand side that must be generated.
 *
 * @param[in] spm
 *          The sparse matrix uses to generate the right hand side, and the
 *          solution of the full problem.
 *
 * @param[out] x
 *          On exit, if x != NULL, then the x vector(s) generated to compute b
 *          is returned. Must be of size at least ldx * spm->n.
 *
 * @param[in] ldx
 *          Defines the leading dimension of x when multiple right hand sides
 *          are available. ldx >= spm->n.
 *
 * @param[in,out] b
 *          b must be an allocated matrix of size at least ldb * nrhs.
 *          On exit, b is initialized as defined by the type parameter.
 *
 * @param[in] ldb
 *          Defines the leading dimension of b when multiple right hand sides
 *          are available. ldb >= spm->n.
 *
 *******************************************************************************
 *
 * @return
 *      \retval PASTIX_SUCCESS if the b vector has been computed succesfully,
 *      \retval PASTIX_ERR_BADPARAMETER otherwise.
 *
 *******************************************************************************/
int
spmGenRHS( int type, int nrhs,
           const pastix_csc_t  *spm,
           void                *x, int ldx,
           void                *b, int ldb )
{
    static int (*ptrfunc[4])(int, int,
                             const pastix_csc_t *,
                             void *, int, void *, int) =
        {
            s_spmGenRHS, d_spmGenRHS, c_spmGenRHS, z_spmGenRHS
        };

    int id = spm->flttype - PastixFloat;
    if ( (id < 0) || (id > 3) ) {
        return PASTIX_ERR_BADPARAMETER;
    }
    else {
        return ptrfunc[id](type, nrhs, spm, x, ldx, b, ldb );
    }
}

/**
 *******************************************************************************
 *
 * @ingroup pastix_csc
 *
 * spmCheckAxb - Check the backward error, and the forward error if x0 is
 * provided.
 *
 *******************************************************************************
 *
 * @param[in] nrhs
 *          Defines the number of right hand side that must be generated.
 *
 * @param[in] spm
 *          The sparse matrix uses to generate the right hand side, and the
 *          solution of the full problem.
 *
 * @param[in,out] x0
 *          If x0 != NULL, the forward error is computed.
 *          On exit, x0 stores (x0-x)
 *
 * @param[in] ldx0
 *          Defines the leading dimension of x0 when multiple right hand sides
 *          are available. ldx0 >= spm->n.
 *
 * @param[in,out] b
 *          b is a matrix of size at least ldb * nrhs.
 *          On exit, b stores Ax-b.
 *
 * @param[in] ldb
 *          Defines the leading dimension of b when multiple right hand sides
 *          are available. ldb >= spm->n.
 *
 * @param[in] x
 *          Contains the solution computed by the solver.
 *
 * @param[in] ldx
 *          Defines the leading dimension of x when multiple right hand sides
 *          are available. ldx >= spm->n.
 *
 *******************************************************************************
 *
 * @return
 *      \retval PASTIX_SUCCESS if the b vector has been computed succesfully,
 *      \retval PASTIX_ERR_BADPARAMETER otherwise.
 *
 *******************************************************************************/
int
spmCheckAxb( int nrhs,
             const pastix_csc_t  *spm,
                   void *x0, int ldx0,
                   void *b,  int ldb,
             const void *x,  int ldx )
{
    static int (*ptrfunc[4])(int, const pastix_csc_t *,
                             void *, int, void *, int, const void *, int) =
        {
            s_spmCheckAxb, d_spmCheckAxb, c_spmCheckAxb, z_spmCheckAxb
        };

    int id = spm->flttype - PastixFloat;
    if ( (id < 0) || (id > 3) ) {
        return PASTIX_ERR_BADPARAMETER;
    }
    else {
        return ptrfunc[id](nrhs, spm, x0, ldx0, b, ldb, x, ldx );
    }
}