Newer
Older

Mathieu Faverge
committed
/**
*

Mathieu Faverge
committed
*

Mathieu Faverge
committed
* PaStiX is a software package provided by Inria Bordeaux - Sud-Ouest,
* LaBRI, University of Bordeaux 1 and IPB.
*
* @version 5.1.0
* @author Xavier Lacoste
* @author Pierre Ramet
* @author Mathieu Faverge
* @date 2013-06-24
*
**/
#include "common.h"

Mathieu Faverge
committed
#include "z_spm.h"
#include "c_spm.h"
#include "d_spm.h"
#include "s_spm.h"
#include "p_spm.h"
static int (*conversionTable[3][3][6])(pastix_spm_t*) = {

Mathieu Faverge
committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
/* From CSC */
{{ NULL, NULL, NULL, NULL, NULL, NULL },
{ p_spmConvertCSC2CSR,
NULL,
s_spmConvertCSC2CSR,
d_spmConvertCSC2CSR,
c_spmConvertCSC2CSR,
z_spmConvertCSC2CSR },
{ p_spmConvertCSC2IJV,
NULL,
s_spmConvertCSC2IJV,
d_spmConvertCSC2IJV,
c_spmConvertCSC2IJV,
z_spmConvertCSC2IJV }},
/* From CSR */
{{ p_spmConvertCSR2CSC,
NULL,
s_spmConvertCSR2CSC,
d_spmConvertCSR2CSC,
c_spmConvertCSR2CSC,
z_spmConvertCSR2CSC },
{ NULL, NULL, NULL, NULL, NULL, NULL },
{ p_spmConvertCSR2IJV,
NULL,
s_spmConvertCSR2IJV,
d_spmConvertCSR2IJV,
c_spmConvertCSR2IJV,
z_spmConvertCSR2IJV }},
/* From IJV */
{{ p_spmConvertIJV2CSC,
NULL,
s_spmConvertIJV2CSC,
d_spmConvertIJV2CSC,
c_spmConvertIJV2CSC,
z_spmConvertIJV2CSC },
{ p_spmConvertIJV2CSR,
NULL,
s_spmConvertIJV2CSR,
d_spmConvertIJV2CSR,
c_spmConvertIJV2CSR,
z_spmConvertIJV2CSR },
{ NULL, NULL, NULL, NULL, NULL, NULL }}
};
/**
*******************************************************************************
*
* @ingroup pastix_spm
*
* spmConvert - Convert the storage format of the given sparse matrix from any
* of the following format: PastixCSC, PastixCSR, or PastixIJV to one of these.
*
*******************************************************************************
*
* @param[in] ofmttype
* The output format of the sparse matrix. It might be PastixCSC,
* PastixCSR, or PastixIJV.
*
* @param[in,out] spm
* The sparse matrix structure to convert.
*
********************************************************************************
*
* @return
* \retval PASTIX_SUCCESS if the conversion happened successfuly
* \retval PASTIX_ERR_BADPARAMETER if one the parameter is incorrect.
*
*******************************************************************************/
int
spmConvert( int ofmttype, pastix_spm_t *ospm )

Mathieu Faverge
committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
{
if ( conversionTable[ospm->fmttype][ofmttype][ospm->flttype] ) {
return conversionTable[ospm->fmttype][ofmttype][ospm->flttype]( ospm );
}
else {
return PASTIX_SUCCESS;
}
}
/**
*******************************************************************************
*
* @ingroup pastix_spm
*
* spmFindBase - Search the base used in the spm structure given as parameter.
*
*******************************************************************************
*
* @param[in] spm
* The sparse matrix structure.
*
********************************************************************************
*
* @return The baseval used in the given sparse matrix structure.
*
*******************************************************************************/
pastix_int_t

Mathieu Faverge
committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
{
pastix_int_t i, *tmp, baseval;
/*
* Check the baseval, we consider that arrays are sorted by columns or rows
*/
baseval = pastix_imin( *(spm->colptr), *(spm->rowptr) );
/*
* if not:
*/
if ( ( baseval != 0 ) &&
( baseval != 1 ) )
{
baseval = spm->n;
tmp = spm->colptr;
for(i=0; i<spm->nnz; i++, tmp++){
baseval = pastix_imin( *tmp, baseval );
}
}
return baseval;
}
/**
*******************************************************************************
*
* @ingroup pastix_spm
*
* spmNorm - Return the ntype norm of the sparse matrix spm.
*
* spmNorm = ( max(abs(spm(i,j))), NORM = PastixMaxNorm
* (
* ( norm1(spm), NORM = PastixOneNorm
* (
* ( normI(spm), NORM = PastixInfNorm
* (
* ( normF(spm), NORM = PastixFrobeniusNorm
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum
* of squares). Note that max(abs(spm(i,j))) is not a consistent matrix
* norm.
*
*******************************************************************************
*
* @param[in] ntype
* = PastixMaxNorm: Max norm
* = PastixOneNorm: One norm
* = PastixInfNorm: Infinity norm
* = PastixFrobeniusNorm: Frobenius norm
*
* @param[in] spm
* The sparse matrix structure.
*
********************************************************************************
*
* @return
* \retval the norm described above. Note that for simplicity, even if
* the norm of single real or single complex matrix is computed with
* single precision, the returned norm is stored in double precision
* number.
* \retval -1., if the floating point of the sparse matrix is
* undefined.
*
*******************************************************************************/
double
spmNorm( int ntype,

Mathieu Faverge
committed
{
double tmp;

Mathieu Faverge
committed
case PastixFloat:

Mathieu Faverge
committed
return tmp;
case PastixDouble:

Mathieu Faverge
committed
case PastixComplex32:

Mathieu Faverge
committed
return tmp;
case PastixComplex64:

Mathieu Faverge
committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
default:
return -1.;
}
}
/**
*******************************************************************************
*
* @ingroup pastix_spm
*
* spmSort - This routine sorts the subarray of edges of each vertex in a
* centralized spm stored in CSC or CSR format. Nothing is performed if IJV
* format is used.
*
* WARNING: This function should NOT be called if dof is greater than 1.
*
*******************************************************************************
*
* @param[in,out] spm
* On entry, the pointer to the sparse matrix structure.
* On exit, the same sparse matrix with subarrays of edges sorted by
* ascending order.
*
********************************************************************************
*
* @return
* \retval PASTIX_SUCCESS if the sort was called
* \retval PASTIX_ERR_BADPARAMETER, if the given spm was incorrect.
*
*******************************************************************************/
int

Mathieu Faverge
committed
{

Mathieu Faverge
committed
case PastixPattern:

Mathieu Faverge
committed
break;
case PastixFloat:

Mathieu Faverge
committed
break;
case PastixDouble:

Mathieu Faverge
committed
break;
case PastixComplex32:

Mathieu Faverge
committed
break;
case PastixComplex64:

Mathieu Faverge
committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
break;
default:
return PASTIX_ERR_BADPARAMETER;
}
return PASTIX_SUCCESS;
}
/**
*******************************************************************************
*
* @ingroup pastix_spm
*
* spmMergeDuplicate - This routine merge the multiple entries in a sparse
* matrix by suming their values together. The sparse matrix needs to be sorted
* first (see spmSort()).
*
* WARNING: Not implemented for CSR and IJV format.
*
*******************************************************************************
*
* @param[in,out] spm
* On entry, the pointer to the sparse matrix structure.
* On exit, the reduced sparse matrix of multiple entries were present
* in it. The multiple values for a same vertex are sum up together.
*
********************************************************************************
*
* @return
* \retval If >=0, the number of vertices that were merged
* \retval PASTIX_ERR_BADPARAMETER, if the given spm was incorrect.
*
*******************************************************************************/
pastix_int_t

Mathieu Faverge
committed
{

Mathieu Faverge
committed
case PastixPattern:

Mathieu Faverge
committed
case PastixFloat:

Mathieu Faverge
committed
case PastixDouble:

Mathieu Faverge
committed
case PastixComplex32:

Mathieu Faverge
committed
case PastixComplex64:

Mathieu Faverge
committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
default:
return PASTIX_ERR_BADPARAMETER;
}
}
/**
*******************************************************************************
*
* @ingroup pastix_spm
*
* spmSymmetrize - This routine merge the multiple entries in a sparse
* matrix by suming their values together. The sparse matrix needs to be sorted
* first (see spmSort()).
*
* WARNING: Not implemented for CSR and IJV format.
*
*******************************************************************************
*
* @param[in,out] spm
* On entry, the pointer to the sparse matrix structure.
* On exit, the reduced sparse matrix of multiple entries were present
* in it. The multiple values for a same vertex are sum up together.
*
********************************************************************************
*
* @return
* \retval If >=0, the number of vertices that were merged
* \retval PASTIX_ERR_BADPARAMETER, if the given spm was incorrect.
*
*******************************************************************************/
pastix_int_t

Mathieu Faverge
committed
{

Mathieu Faverge
committed
case PastixPattern:

Mathieu Faverge
committed
case PastixFloat:

Mathieu Faverge
committed
case PastixDouble:

Mathieu Faverge
committed
case PastixComplex32:

Mathieu Faverge
committed
case PastixComplex64:

Mathieu Faverge
committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
default:
return PASTIX_ERR_BADPARAMETER;
}
}
/**
*******************************************************************************
*
* @ingroup pastix_spm
*
* spmCheckAndCorrect - This routine initializes the sparse matrix to fit the
* PaStiX requirements. If needed, the format is changed to CSC, the duplicated
* vertices are merged together by summing their values; the graph is made
* symmetric for matrices with unsymmetric pattern, new values are set to 0.;
* Only the lower part is kept for the symmetric matrices.
*
* On exit, if no changes have been made, the initial sparse matrix is returned,
* otherwise a copy of the sparse matrix structured fixed to meet the PaStiX
* requirements is returned.
*
*******************************************************************************
*
* @param[in,out] spm
* The pointer to the sparse matrix structure to check, and correct.
* On exit, the subarrays related to each column might have been sorted
* by ascending order.
*
*******************************************************************************
*
* @return
* \retval If no modifications were made to the initial matrix
* structure, the one given as parameter is returned
* \retval Otherwise, the news sparse matrix structure is returned. It
* must be destroyed with spmExit() and a free of the returned
* pointer.
*
*******************************************************************************/
pastix_spm_t *
spmCheckAndCorrect( pastix_spm_t *spm )

Mathieu Faverge
committed
{

Mathieu Faverge
committed
pastix_int_t count;
/* Let's work on a copy */

Mathieu Faverge
committed
/* PaStiX works on CSC matrices */

Mathieu Faverge
committed
/* Sort the rowptr for each column */

Mathieu Faverge
committed
/* Merge the duplicated entries by summing the values */

Mathieu Faverge
committed
if ( count > 0 ) {
fprintf(stderr, "spmCheckAndCorrect: %ld entries have been merged\n", (int64_t)count );
}
/**
* If the matrix is symmetric or hermitian, we keep only the upper or lower
* part, otherwise, we symmetrize the graph to get A+A^t, new values are set
* to 0.
*/
if ( newspm->mtxtype == PastixGeneral ) {
count = spmSymmetrize( newspm );

Mathieu Faverge
committed
if ( count > 0 ) {
fprintf(stderr, "spmCheckAndCorrect: %ld entries have been added for symmetry\n", (int64_t)count );
}
}
else {

Mathieu Faverge
committed
}
/**
* Check if we return the new one, or the original one because no changes
* have been made
*/
if (( spm->fmttype != newspm->fmttype ) ||
( spm->nnz != newspm->nnz ) )

Mathieu Faverge
committed
{

Mathieu Faverge
committed
}
else {
spmExit( newspm );
free(newspm);
return (pastix_spm_t*)spm;

Mathieu Faverge
committed
}
}
/**
*******************************************************************************
*
* @ingroup pastix_spm
*
* spmExit - Free the spm structure given as parameter
*
*******************************************************************************
*
* @param[in,out] spm
* The sparse matrix to free.
*
*******************************************************************************/
void

Mathieu Faverge
committed
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
{
if(spm->colptr != NULL)
memFree_null(spm->colptr);
if(spm->rowptr != NULL)
memFree_null(spm->rowptr);
if(spm->loc2glob != NULL)
memFree_null(spm->loc2glob);
if(spm->values != NULL)
memFree_null(spm->values);
}
/**
*******************************************************************************
*
* @ingroup pastix_spm
*
* spmCopy - Duplicate the spm data structure given as parameter.
*
*******************************************************************************
*
* @param[in] spm
* The sparse matrix to copy.
*
*******************************************************************************
*
* @return
* The copy of the sparse matrix.
*
*******************************************************************************/
pastix_spm_t *
spmCopy( const pastix_spm_t *spm )

Mathieu Faverge
committed
{
pastix_spm_t *newspm = (pastix_spm_t*)malloc(sizeof(pastix_spm_t));

Mathieu Faverge
committed
memcpy( newspm, spm, sizeof(pastix_spm_t));

Mathieu Faverge
committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
if(spm->colptr != NULL) {
newspm->colptr = (pastix_int_t*)malloc((spm->n+1) * sizeof(pastix_int_t));
memcpy( newspm->colptr, spm->colptr, (spm->n+1) * sizeof(pastix_int_t));
}
if(spm->rowptr != NULL) {
newspm->rowptr = (pastix_int_t*)malloc(spm->nnz * sizeof(pastix_int_t));
memcpy( newspm->rowptr, spm->rowptr, spm->nnz * sizeof(pastix_int_t));
}
if(spm->loc2glob != NULL) {
newspm->loc2glob = (pastix_int_t*)malloc(spm->n * sizeof(pastix_int_t));
memcpy( newspm->loc2glob, spm->loc2glob, spm->n * sizeof(pastix_int_t));
}
if(spm->values != NULL) {
size_t valsize = spm->nnz * pastix_size_of( spm->flttype );
newspm->values = malloc(valsize);
memcpy( newspm->values, spm->values, valsize);
}
return newspm;
}
/**
*******************************************************************************
*
* @ingroup pastix_spm
*
* spmBase - Rebase the spm to the given value.
*
*******************************************************************************
*
* @param[in,out] spm
* The sparse matrix to rebase.
*
* @param[in] baseval
* The base value to use in the graph (0 or 1).
*
*******************************************************************************/

Mathieu Faverge
committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
int baseval )
{
pastix_int_t baseadj;
pastix_int_t i, n, nnz;
/* Parameter checks */
if ( spm == NULL ) {
errorPrint("spmBase: spm pointer is NULL");
return;
}
if ( (spm->colptr == NULL) ||
(spm->rowptr == NULL) )
{
errorPrint("spmBase: spm pointer is not correctly initialized");
return;
}
if ( (baseval != 0) &&
(baseval != 1) )
{
errorPrint("spmBase: baseval is incorrect, must be 0 or 1");
return;
}
baseadj = baseval - spmFindBase( spm );
if (baseadj == 0)
return;
n = spm->n;
nnz = spm->colptr[n] - spm->colptr[0];
for (i = 0; i <= n; i++) {
spm->colptr[i] += baseadj;
}
for (i = 0; i < nnz; i++) {
spm->rowptr[i] += baseadj;
}
if (spm->loc2glob != NULL) {
for (i = 0; i < n; i++) {
spm->loc2glob[i] += baseadj;
}
}
return;
}
/**
* TODO: Maybe we should move down the cast of the parameters to the lowest
* functions, and simplify this one to have identical calls to all subfunction
*/
int
spmMatVec( int trans,
const void *alpha,

Mathieu Faverge
committed
const void *x,
const void *beta,
void *y )
{

Mathieu Faverge
committed
case PastixHermitian:

Mathieu Faverge
committed
case PastixFloat:
return s_spmSyCSCv( *((const float*)alpha), spm, (const float*)x, *((const float*)beta), (float*)y );

Mathieu Faverge
committed
case PastixComplex32:
return c_spmHeCSCv( *((const pastix_complex32_t*)alpha), spm, (const pastix_complex32_t*)x, *((const pastix_complex32_t*)beta), (pastix_complex32_t*)y );

Mathieu Faverge
committed
case PastixComplex64:
return z_spmHeCSCv( *((const pastix_complex64_t*)alpha), spm, (const pastix_complex64_t*)x, *((const pastix_complex64_t*)beta), (pastix_complex64_t*)y );

Mathieu Faverge
committed
case PastixDouble:
default:
return d_spmSyCSCv( *((const double*)alpha), spm, (const double*)x, *((const double*)beta), (double*)y );

Mathieu Faverge
committed
}
case PastixSymmetric:

Mathieu Faverge
committed
case PastixFloat:
return s_spmSyCSCv( *((const float*)alpha), spm, (const float*)x, *((const float*)beta), (float*)y );

Mathieu Faverge
committed
case PastixComplex32:
return c_spmSyCSCv( *((const pastix_complex32_t*)alpha), spm, (const pastix_complex32_t*)x, *((const pastix_complex32_t*)beta), (pastix_complex32_t*)y );

Mathieu Faverge
committed
case PastixComplex64:
return z_spmSyCSCv( *((const pastix_complex64_t*)alpha), spm, (const pastix_complex64_t*)x, *((const pastix_complex64_t*)beta), (pastix_complex64_t*)y );

Mathieu Faverge
committed
case PastixDouble:
default:
return d_spmSyCSCv( *((const double*)alpha), spm, (const double*)x, *((const double*)beta), (double*)y );

Mathieu Faverge
committed
}
case PastixGeneral:
default:

Mathieu Faverge
committed
case PastixFloat:
return s_spmGeCSCv( trans, *((const float*)alpha), spm, (const float*)x, *((const float*)beta), (float*)y );

Mathieu Faverge
committed
case PastixComplex32:
return c_spmGeCSCv( trans, *((const pastix_complex32_t*)alpha), spm, (const pastix_complex32_t*)x, *((const pastix_complex32_t*)beta), (pastix_complex32_t*)y );

Mathieu Faverge
committed
case PastixComplex64:
return z_spmGeCSCv( trans, *((const pastix_complex64_t*)alpha), spm, (const pastix_complex64_t*)x, *((const pastix_complex64_t*)beta), (pastix_complex64_t*)y );

Mathieu Faverge
committed
case PastixDouble:
default:
return d_spmGeCSCv( trans, *((const double*)alpha), spm, (const double*)x, *((const double*)beta), (double*)y );

Mathieu Faverge
committed
}
}
}
/**
*******************************************************************************
*

Mathieu Faverge
committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
*
* z_spmGenRHS - Generate nrhs right hand side vectors associated to a given
* matrix to test a problem with a solver.
*
*******************************************************************************
*
* @param[in] type
* Defines how to compute the vector b.
* - PastixRhsOne: b is computed such that x = 1 [ + I ]
* - PastixRhsI: b is computed such that x = i [ + i * I ]
* - PastixRhsRndX: b is computed by matrix-vector product, such that
* is a random vector in the range [-0.5, 0.5]
* - PastixRhsRndB: b is computed randomly and x is not computed.
*
* @param[in] nrhs
* Defines the number of right hand side that must be generated.
*
* @param[in] spm
* The sparse matrix uses to generate the right hand side, and the
* solution of the full problem.
*
* @param[out] x
* On exit, if x != NULL, then the x vector(s) generated to compute b
* is returned. Must be of size at least ldx * spm->n.
*
* @param[in] ldx
* Defines the leading dimension of x when multiple right hand sides
* are available. ldx >= spm->n.
*
* @param[in,out] b
* b must be an allocated matrix of size at least ldb * nrhs.
* On exit, b is initialized as defined by the type parameter.
*
* @param[in] ldb
* Defines the leading dimension of b when multiple right hand sides
* are available. ldb >= spm->n.
*
*******************************************************************************
*
* @return
* \retval PASTIX_SUCCESS if the b vector has been computed succesfully,
* \retval PASTIX_ERR_BADPARAMETER otherwise.
*
*******************************************************************************/
int
spmGenRHS( int type, int nrhs,

Mathieu Faverge
committed
void *x, int ldx,
void *b, int ldb )
{
static int (*ptrfunc[4])(int, int,

Mathieu Faverge
committed
void *, int, void *, int) =
{
s_spmGenRHS, d_spmGenRHS, c_spmGenRHS, z_spmGenRHS
};
int id = spm->flttype - PastixFloat;
if ( (id < 0) || (id > 3) ) {
return PASTIX_ERR_BADPARAMETER;
}
else {
return ptrfunc[id](type, nrhs, spm, x, ldx, b, ldb );
}
}
/**
*******************************************************************************
*

Mathieu Faverge
committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
*
* spmCheckAxb - Check the backward error, and the forward error if x0 is
* provided.
*
*******************************************************************************
*
* @param[in] nrhs
* Defines the number of right hand side that must be generated.
*
* @param[in] spm
* The sparse matrix uses to generate the right hand side, and the
* solution of the full problem.
*
* @param[in,out] x0
* If x0 != NULL, the forward error is computed.
* On exit, x0 stores (x0-x)
*
* @param[in] ldx0
* Defines the leading dimension of x0 when multiple right hand sides
* are available. ldx0 >= spm->n.
*
* @param[in,out] b
* b is a matrix of size at least ldb * nrhs.
* On exit, b stores Ax-b.
*
* @param[in] ldb
* Defines the leading dimension of b when multiple right hand sides
* are available. ldb >= spm->n.
*
* @param[in] x
* Contains the solution computed by the solver.
*
* @param[in] ldx
* Defines the leading dimension of x when multiple right hand sides
* are available. ldx >= spm->n.
*
*******************************************************************************
*
* @return
* \retval PASTIX_SUCCESS if the b vector has been computed succesfully,
* \retval PASTIX_ERR_BADPARAMETER otherwise.
*
*******************************************************************************/
int
spmCheckAxb( int nrhs,

Mathieu Faverge
committed
void *x0, int ldx0,
void *b, int ldb,
const void *x, int ldx )
{
static int (*ptrfunc[4])(int, const pastix_spm_t *,

Mathieu Faverge
committed
void *, int, void *, int, const void *, int) =
{
s_spmCheckAxb, d_spmCheckAxb, c_spmCheckAxb, z_spmCheckAxb
};
int id = spm->flttype - PastixFloat;
if ( (id < 0) || (id > 3) ) {
return PASTIX_ERR_BADPARAMETER;
}
else {
return ptrfunc[id](nrhs, spm, x0, ldx0, b, ldb, x, ldx );
}
}