Mentions légales du service

Skip to content
Snippets Groups Projects
Commit a58864d1 authored by BOUCHERIE Raphael's avatar BOUCHERIE Raphael
Browse files

need to add the reference to libhqr for the testfile

parent 4869799b
No related branches found
No related tags found
1 merge request!47Integration of hierarchicah householder reduction trees
......@@ -39,13 +39,16 @@
*
*******************************************************************************
*
* @param[in] qrtree
* The tree used for the factorization
*
* @param[in] M
* The number of rows of the matrix A. M >= 0.
*
* @param[in] N
* The number of columns of the matrix A. N >= 0.
*
* @param[in] A
* @param[in, out] A
* On entry, the M-by-N matrix A.
* On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N
* upper trapezoidal matrix R (R is upper triangular if M >= N); the elements below the
......@@ -55,7 +58,11 @@
* @param[in] LDA
* The leading dimension of the array A. LDA >= max(1,M).
*
* @param[in] descTS
* @param[out] descTS
* On exit, auxiliary factorization data, required by MORSE_zgeqrs to solve the system
* of equations.
*
* @param[out] descTT
* On exit, auxiliary factorization data, required by MORSE_zgeqrs to solve the system
* of equations.
*
......@@ -167,7 +174,11 @@ int MORSE_zgeqrf_param(const libhqr_tree_t *qrtree, int M, int N,
* diagonal represent the unitary matrix Q as a product of elementary reflectors stored
* by tiles.
*
* @param[out] T
* @param[out] TS
* On exit, auxiliary factorization data, required by MORSE_zgeqrs to solve the system
* of equations.
*
* @param[out] TT
* On exit, auxiliary factorization data, required by MORSE_zgeqrs to solve the system
* of equations.
*
......
......@@ -64,6 +64,7 @@ set(ZSRC
# LAPACK
##################
testing_zgels.c
testing_zgeqrf_param.c
#testing_zgesv.c
testing_zgesv_incpiv.c
#testing_zgetri.c
......@@ -90,7 +91,6 @@ set(ZSRC
#testing_zhegv.c
#testing_zhegvd.c
testing_zgeqrf_qdwh.c
testing_zgeqrfhqr_qdwh.c
)
# Add include and link directories
......
/**
*
* @copyright (c) 2009-2014 The University of Tennessee and The University
* of Tennessee Research Foundation.
* All rights reserved.
* @copyright (c) 2012-2014 Inria. All rights reserved.
* @copyright (c) 2012-2014 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved.
*
**/
/**
*
* @file testing_zgeqrf_param.c
*
* MORSE testing routines
* MORSE is a software package provided by Univ. of Tennessee,
* Univ. of California Berkeley and Univ. of Colorado Denver
*
* @version 2.5.0
* @comment This file has been automatically generated
* from Plasma 2.5.0 for MORSE 1.0.0
* @author Bilel Hadri
* @author Hatem Ltaief
* @author Mathieu Faverge
* @author Emmanuel Agullo
* @author Cedric Castagnede
* @author Boucherie Raphael
* @date 2010-11-15
* @precisions normal z -> c d s
*
**/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <morse.h>
#include <coreblas/include/cblas.h>
#include <coreblas/include/lapacke.h>
#include <coreblas/include/coreblas.h>
#include "testing_zauxiliary.h"
#undef REAL
#define COMPLEX
enum blas_order_type {
blas_rowmajor = 101,
blas_colmajor = 102 };
enum blas_uplo_type {
blas_upper = 121,
blas_lower = 122 };
enum blas_cmach_type {
blas_base = 151,
blas_t = 152,
blas_rnd = 153,
blas_ieee = 154,
blas_emin = 155,
blas_emax = 156,
blas_eps = 157,
blas_prec = 158,
blas_underflow = 159,
blas_overflow = 160,
blas_sfmin = 161};
enum blas_norm_type {
blas_one_norm = 171,
blas_real_one_norm = 172,
blas_two_norm = 173,
blas_frobenius_norm = 174,
blas_inf_norm = 175,
blas_real_inf_norm = 176,
blas_max_norm = 177,
blas_real_max_norm = 178 };
static void
BLAS_error(char *rname, int err, int val, int x) {
fprintf( stderr, "%s %d %d %d\n", rname, err, val, x );
abort();
}
static
void
BLAS_zsy_norm(enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, int n, const MORSE_Complex64_t *a, int lda, double *res) {
int i, j; double anorm, v;
char rname[] = "BLAS_zsy_norm";
if (order != blas_colmajor) BLAS_error( rname, -1, order, 0 );
if (norm == blas_inf_norm) {
anorm = 0.0;
if (blas_upper == uplo) {
for (i = 0; i < n; ++i) {
v = 0.0;
for (j = 0; j < i; ++j) {
v += cabs( a[j + i * lda] );
}
for (j = i; j < n; ++j) {
v += cabs( a[i + j * lda] );
}
if (v > anorm)
anorm = v;
}
} else {
BLAS_error( rname, -3, norm, 0 );
return;
}
} else {
BLAS_error( rname, -2, norm, 0 );
return;
}
if (res) *res = anorm;
}
static
void
BLAS_zge_norm(enum blas_order_type order, enum blas_norm_type norm,
int m, int n, const MORSE_Complex64_t *a, int lda, double *res) {
int i, j; float anorm, v;
char rname[] = "BLAS_zge_norm";
if (order != blas_colmajor) BLAS_error( rname, -1, order, 0 );
if (norm == blas_frobenius_norm) {
anorm = 0.0f;
for (j = n; j; --j) {
for (i = m; i; --i) {
v = a[0];
anorm += v * v;
a++;
}
a += lda - m;
}
anorm = sqrt( anorm );
} else if (norm == blas_inf_norm) {
anorm = 0.0f;
for (i = 0; i < m; ++i) {
v = 0.0f;
for (j = 0; j < n; ++j) {
v += cabs( a[i + j * lda] );
}
if (v > anorm)
anorm = v;
}
} else {
BLAS_error( rname, -2, norm, 0 );
return;
}
if (res) *res = anorm;
}
static
double
BLAS_dpow_di(double x, int n) {
double rv = 1.0;
if (n < 0) {
n = -n;
x = 1.0 / x;
}
for (; n; n >>= 1, x *= x) {
if (n & 1)
rv *= x;
}
return rv;
}
static
double
BLAS_dfpinfo(enum blas_cmach_type cmach) {
double eps = 1.0, r = 1.0, o = 1.0, b = 2.0;
int t = 53, l = 1024, m = -1021;
char rname[] = "BLAS_dfpinfo";
if ((sizeof eps) == sizeof(float)) {
t = 24;
l = 128;
m = -125;
} else {
t = 53;
l = 1024;
m = -1021;
}
/* for (i = 0; i < t; ++i) eps *= half; */
eps = BLAS_dpow_di( b, -t );
/* for (i = 0; i >= m; --i) r *= half; */
r = BLAS_dpow_di( b, m-1 );
o -= eps;
/* for (i = 0; i < l; ++i) o *= b; */
o = (o * BLAS_dpow_di( b, l-1 )) * b;
switch (cmach) {
case blas_eps: return eps;
case blas_sfmin: return r;
default:
BLAS_error( rname, -1, cmach, 0 );
break;
}
return 0.0;
}
static int check_orthogonality(int, int, int, MORSE_Complex64_t*, double);
static int check_factorization(int, int, MORSE_Complex64_t*, MORSE_Complex64_t*, int, MORSE_Complex64_t*, double);
static int check_solution(int, int, int, MORSE_Complex64_t*, int, MORSE_Complex64_t*, MORSE_Complex64_t*, int, double);
int testing_zgeqrf_param(int argc, char **argv)
{
int hres = 0;
int mode = 0;
if ( argc < 1 ){
goto usage;
} else {
mode = atoi(argv[0]);
}
/* Check for number of arguments*/
if ( ((mode == 0) && (argc != 6)) ||
((mode != 0) && (argc != 7)) ){
usage:
USAGE("GEQRF_PARAM", "MODE M N LDA NRHS LDB [RH]",
" - MODE : 0: flat, 1: tree (RH needed)\n"
" - M : number of rows of the matrix A\n"
" - N : number of columns of the matrix A\n"
" - LDA : leading dimension of the matrix A\n"
" - NRHS : number of RHS\n"
" - LDB : leading dimension of the matrix B\n"
" - RH : Size of each subdomains\n");
return -1;
}
int M = atoi(argv[1]);
int N = atoi(argv[2]);
int LDA = max( atoi(argv[3]), M );
int NRHS = atoi(argv[4]);
int LDB = max( max( atoi(argv[5]), M ), N );
int rh;
libhqr_tree_t qrtree;
libhqr_tiledesc_t matrix;
int K = min(M, N);
double eps;
int info_ortho, info_solution, info_factorization;
int i,j;
int LDAxN = LDA*N;
int LDBxNRHS = LDB*NRHS;
int domino, tsrr, llvl, hlvl, qr_a, qr_p;
MORSE_Complex64_t *A1 = (MORSE_Complex64_t *)malloc(LDA*N*sizeof(MORSE_Complex64_t));
MORSE_Complex64_t *A2 = (MORSE_Complex64_t *)malloc(LDA*N*sizeof(MORSE_Complex64_t));
MORSE_Complex64_t *B1 = (MORSE_Complex64_t *)malloc(LDB*NRHS*sizeof(MORSE_Complex64_t));
MORSE_Complex64_t *B2 = (MORSE_Complex64_t *)malloc(LDB*NRHS*sizeof(MORSE_Complex64_t));
MORSE_Complex64_t *Q = (MORSE_Complex64_t *)malloc(LDA*N*sizeof(MORSE_Complex64_t));
MORSE_desc_t *TS;
MORSE_desc_t *TT;
/* Check if unable to allocate memory */
if ((!A1)||(!A2)||(!B1)||(!B2)||(!Q)){
printf("Out of Memory \n ");
return -2;
}
if ( mode ) {
rh = atoi(argv[6]);
MORSE_Set(MORSE_HOUSEHOLDER_MODE, MORSE_TREE_HOUSEHOLDER);
MORSE_Set(MORSE_HOUSEHOLDER_SIZE, rh);
}
MORSE_Alloc_Workspace_zgels(M, N, &TS, 1, 1);
MORSE_Alloc_Workspace_zgels(M, N, &TT, 1, 1);
memset(TS->mat, 0, (TS->llm*TS->lln)*sizeof(MORSE_Complex64_t));
memset(TT->mat, 0, (TT->llm*TT->lln)*sizeof(MORSE_Complex64_t));
eps = BLAS_dfpinfo( blas_eps );
/*----------------------------------------------------------
* TESTING ZGEQRF_PARAM
*/
/* Initialize matrix */
matrix.mt = TS->mt;
matrix.nt = TS->nt;
matrix.nodes = 1;
matrix.p = 1;
/* Initialize qrtree */
libhqr_hqr_init( &qrtree, 0, &matrix, llvl, hlvl, qr_a, qr_p, domino, tsrr);
/* Initialize A1 and A2 */
LAPACKE_zlarnv_work(IONE, ISEED, LDAxN, A1);
for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
A2[LDA*j+i] = A1[LDA*j+i] ;
/* Initialize B1 and B2 */
memset(B2, 0, LDB*NRHS*sizeof(MORSE_Complex64_t));
LAPACKE_zlarnv_work(IONE, ISEED, LDBxNRHS, B1);
for (i = 0; i < M; i++)
for (j = 0; j < NRHS; j++)
B2[LDB*j+i] = B1[LDB*j+i] ;
/* MORSE ZGEQRF_PARAM */
MORSE_zgeqrf_param(&qrtree, M, N, A2, LDA, TS, TT);
/* MORSE ZGELS */
if (M >= N)
/* Building the economy-size Q */
MORSE_zungqr(M, N, K, A2, LDA, TS, Q, LDA);
else
/* Building the economy-size Q */
MORSE_zunglq(M, N, K, A2, LDA, TS, Q, LDA);
printf("\n");
printf("------ TESTS FOR CHAMELEON ZGEQRF_PARAM ROUTINE ------- \n");
printf(" Size of the Matrix %d by %d\n", M, N);
printf("\n");
printf(" The matrix A is randomly generated for each test.\n");
printf("============\n");
printf(" The relative machine precision (eps) is to be %e \n",eps);
printf(" Computational tests pass if scaled residuals are less than 60.\n");
/* Check the orthogonality, factorization and the solution */
info_ortho = check_orthogonality(M, N, LDA, Q, eps);
info_factorization = check_factorization(M, N, A1, A2, LDA, Q, eps);
info_solution = check_solution(M, N, NRHS, A1, LDA, B1, B2, LDB, eps);
if ((info_solution == 0)&(info_factorization == 0)&(info_ortho == 0)) {
printf("***************************************************\n");
printf(" ---- TESTING ZGELS ...................... PASSED !\n");
printf("***************************************************\n");
}
else {
printf("************************************************\n");
printf(" - TESTING ZGELS ... FAILED !\n"); hres++;
printf("************************************************\n");
}
libhqr_matrix_finalize( &qrtree );
free(A1); free(A2); free(B1); free(B2); free(Q);
MORSE_Dealloc_Workspace( &TS );
MORSE_Dealloc_Workspace( &TT );
return hres;
}
/*-------------------------------------------------------------------
* Check the orthogonality of Q
*/
static int check_orthogonality(int M, int N, int LDQ, MORSE_Complex64_t *Q, double eps)
{
double alpha, beta;
double normQ;
int info_ortho;
int i;
int minMN = min(M, N);
double *work = (double *)malloc(minMN*sizeof(double));
alpha = 1.0;
beta = -1.0;
/* Build the idendity matrix USE DLASET?*/
MORSE_Complex64_t *Id = (MORSE_Complex64_t *) malloc(minMN*minMN*sizeof(MORSE_Complex64_t));
memset((void*)Id, 0, minMN*minMN*sizeof(MORSE_Complex64_t));
for (i = 0; i < minMN; i++)
Id[i*minMN+i] = (MORSE_Complex64_t)1.0;
/* Perform Id - Q'Q */
if (M >= N)
cblas_zherk(CblasColMajor, CblasUpper, CblasConjTrans, N, M, alpha, Q, LDQ, beta, Id, N);
else
cblas_zherk(CblasColMajor, CblasUpper, CblasNoTrans, M, N, alpha, Q, LDQ, beta, Id, M);
BLAS_zsy_norm( blas_colmajor, blas_inf_norm, blas_upper, minMN, Id, minMN, &normQ );
printf("============\n");
printf("Checking the orthogonality of Q \n");
printf("||Id-Q'*Q||_oo / (N*eps) = %e \n", normQ/(minMN*eps));
if ( isnan(normQ / (minMN * eps)) || isinf(normQ / (minMN * eps)) || (normQ / (minMN * eps) > 60.0) ) {
printf("-- Orthogonality is suspicious ! \n");
info_ortho=1;
}
else {
printf("-- Orthogonality is CORRECT ! \n");
info_ortho=0;
}
free(work); free(Id);
return info_ortho;
}
/*------------------------------------------------------------
* Check the factorization QR
*/
static int check_factorization(int M, int N, MORSE_Complex64_t *A1, MORSE_Complex64_t *A2, int LDA, MORSE_Complex64_t *Q, double eps )
{
double Anorm, Rnorm;
MORSE_Complex64_t alpha, beta;
int info_factorization;
int i,j;
MORSE_Complex64_t *Ql = (MORSE_Complex64_t *)malloc(M*N*sizeof(MORSE_Complex64_t));
MORSE_Complex64_t *Residual = (MORSE_Complex64_t *)malloc(M*N*sizeof(MORSE_Complex64_t));
double *work = (double *)malloc(max(M,N)*sizeof(double));
alpha=1.0;
beta=0.0;
if (M >= N) {
/* Extract the R */
MORSE_Complex64_t *R = (MORSE_Complex64_t *)malloc(N*N*sizeof(MORSE_Complex64_t));
memset((void*)R, 0, N*N*sizeof(MORSE_Complex64_t));
LAPACKE_zlacpy_work(LAPACK_COL_MAJOR,'u', M, N, A2, LDA, R, N);
/* Perform Ql=Q*R */
memset((void*)Ql, 0, M*N*sizeof(MORSE_Complex64_t));
cblas_zgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, M, N, N, CBLAS_SADDR(alpha), Q, LDA, R, N, CBLAS_SADDR(beta), Ql, M);
free(R);
}
else {
/* Extract the L */
MORSE_Complex64_t *L = (MORSE_Complex64_t *)malloc(M*M*sizeof(MORSE_Complex64_t));
memset((void*)L, 0, M*M*sizeof(MORSE_Complex64_t));
LAPACKE_zlacpy_work(LAPACK_COL_MAJOR,'l', M, N, A2, LDA, L, M);
/* Perform Ql=LQ */
memset((void*)Ql, 0, M*N*sizeof(MORSE_Complex64_t));
cblas_zgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, M, N, M, CBLAS_SADDR(alpha), L, M, Q, LDA, CBLAS_SADDR(beta), Ql, M);
free(L);
}
/* Compute the Residual */
for (i = 0; i < M; i++)
for (j = 0 ; j < N; j++)
Residual[j*M+i] = A1[j*LDA+i]-Ql[j*M+i];
BLAS_zge_norm( blas_colmajor, blas_inf_norm, M, N, Residual, M, &Rnorm );
BLAS_zge_norm( blas_colmajor, blas_inf_norm, M, N, A2, LDA, &Anorm );
if (M >= N) {
printf("============\n");
printf("Checking the QR Factorization \n");
printf("-- ||A-QR||_oo/(||A||_oo.N.eps) = %e \n",Rnorm/(Anorm*N*eps));
}
else {
printf("============\n");
printf("Checking the LQ Factorization \n");
printf("-- ||A-LQ||_oo/(||A||_oo.N.eps) = %e \n",Rnorm/(Anorm*N*eps));
}
if (isnan(Rnorm / (Anorm * N *eps)) || isinf(Rnorm / (Anorm * N *eps)) || (Rnorm / (Anorm * N * eps) > 60.0) ) {
printf("-- Factorization is suspicious ! \n");
info_factorization = 1;
}
else {
printf("-- Factorization is CORRECT ! \n");
info_factorization = 0;
}
free(work); free(Ql); free(Residual);
return info_factorization;
}
/*--------------------------------------------------------------
* Check the solution
*/
static int check_solution(int M, int N, int NRHS, MORSE_Complex64_t *A, int LDA, MORSE_Complex64_t *B, MORSE_Complex64_t *X, int LDB, double eps)
{
int info_solution;
double Rnorm, Anorm, Xnorm, Bnorm;
MORSE_Complex64_t alpha, beta;
double result;
double *work = (double *)malloc(max(M, N)* sizeof(double));
alpha = 1.0;
beta = -1.0;
BLAS_zge_norm( blas_colmajor, blas_inf_norm, M, N, A, LDA, &Anorm );
BLAS_zge_norm( blas_colmajor, blas_inf_norm, N, NRHS, B, LDB, &Bnorm );
BLAS_zge_norm( blas_colmajor, blas_inf_norm, M, NRHS, X, LDB, &Xnorm );
cblas_zgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, M, NRHS, N, CBLAS_SADDR(alpha), A, LDA, X, LDB, CBLAS_SADDR(beta), B, LDB);
if (M >= N) {
MORSE_Complex64_t *Residual = (MORSE_Complex64_t *)malloc(M*NRHS*sizeof(MORSE_Complex64_t));
memset((void*)Residual, 0, M*NRHS*sizeof(MORSE_Complex64_t));
cblas_zgemm(CblasColMajor, CblasConjTrans, CblasNoTrans, N, NRHS, M, CBLAS_SADDR(alpha), A, LDA, B, LDB, CBLAS_SADDR(beta), Residual, M);
BLAS_zge_norm( blas_colmajor, blas_inf_norm, M, NRHS, Residual, M, &Rnorm );
free(Residual);
}
else {
MORSE_Complex64_t *Residual = (MORSE_Complex64_t *)malloc(N*NRHS*sizeof(MORSE_Complex64_t));
memset((void*)Residual, 0, N*NRHS*sizeof(MORSE_Complex64_t));
cblas_zgemm(CblasColMajor, CblasConjTrans, CblasNoTrans, N, NRHS, M, CBLAS_SADDR(alpha), A, LDA, B, LDB, CBLAS_SADDR(beta), Residual, N);
BLAS_zge_norm( blas_colmajor, blas_inf_norm, N, NRHS, Residual, N, &Rnorm );
free(Residual);
}
if (getenv("MORSE_TESTING_VERBOSE"))
printf( "||A||_oo=%f\n||X||_oo=%f\n||B||_oo=%f\n||A X - B||_oo=%e\n", Anorm, Xnorm, Bnorm, Rnorm );
result = Rnorm / ( (Anorm*Xnorm+Bnorm)*N*eps ) ;
printf("============\n");
printf("Checking the Residual of the solution \n");
printf("-- ||Ax-B||_oo/((||A||_oo||x||_oo+||B||_oo).N.eps) = %e \n", result);
if ( isnan(Xnorm) || isinf(Xnorm) || isnan(result) || isinf(result) || (result > 60.0) ) {
printf("-- The solution is suspicious ! \n");
info_solution = 1;
}
else{
printf("-- The solution is CORRECT ! \n");
info_solution = 0;
}
free(work);
return info_solution;
}
/**
*
* @copyright (c) 2009-2014 The University of Tennessee and The University
* of Tennessee Research Foundation.
* All rights reserved.
* @copyright (c) 2012-2014 Inria. All rights reserved.
* @copyright (c) 2012-2014 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved.
*
**/
/**
*
* @file testing_zgels.c
*
* MORSE testing routines
* MORSE is a software package provided by Univ. of Tennessee,
* Univ. of California Berkeley and Univ. of Colorado Denver
*
* @version 2.5.0
* @comment This file has been automatically generated
* from Plasma 2.5.0 for MORSE 1.0.0
* @author Bilel Hadri
* @author Hatem Ltaief
* @author Mathieu Faverge
* @author Emmanuel Agullo
* @author Cedric Castagnede
* @date 2010-11-15
* @precisions normal z -> c d s
*
**/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <morse.h>
#include <coreblas/include/cblas.h>
#include <coreblas/include/lapacke.h>
#include <coreblas/include/coreblas.h>
#include <coreblas/include/coreblas_z.h>
#include "testing_zauxiliary.h"
#undef REAL
#define COMPLEX
static int check_orthogonality(int, int, const MORSE_Complex64_t*, int, double);
static int check_factorization(int, int, const MORSE_Complex64_t*, int, const MORSE_Complex64_t*, int, MORSE_Complex64_t*, int, double);
int testing_zgeqrfhqr_qdwh(int argc, char **argv)
{
int hres = 0;
if ( argc != 4 ) {
USAGE("GEQRF_QDWH", "optid M NB LDA",
" - optid: Take into account the fact that A2 is Id or not\n"
" - M : number of rows of the matrix A1 and A2\n"
" - NB : tile size\n"
" - IB : inner tile size\n");
return -1;
}
int optid = atoi(argv[0]) ? 1: 0;
int M = atoi(argv[1]);
int NB = atoi(argv[2]);
int IB = atoi(argv[3]);
int MxM = M * M;
int LDA = 2*M;
double eps;
int info_ortho, info_solution, info_factorization;
int i, j;
/**
* Compute A = QR with
*
* A = [ A1 ] and Q = [ Q1 ]
* [ A2 ] = [ Q2 ]
*
* and where A1 is the same size as A2
*
*/
MORSE_Complex64_t *A1 = (MORSE_Complex64_t *)malloc(M*M*sizeof(MORSE_Complex64_t));
MORSE_Complex64_t *A2 = (MORSE_Complex64_t *)malloc(M*M*sizeof(MORSE_Complex64_t));
MORSE_Complex64_t *Q1 = (MORSE_Complex64_t *)malloc(M*M*sizeof(MORSE_Complex64_t));
MORSE_Complex64_t *Q2 = (MORSE_Complex64_t *)malloc(M*M*sizeof(MORSE_Complex64_t));
MORSE_Complex64_t *A = (MORSE_Complex64_t *)malloc(2*M*M*sizeof(MORSE_Complex64_t));
MORSE_Complex64_t *Q;
MORSE_desc_t *T1, *T2;
/* Check if unable to allocate memory */
if ( (!A) || (!A1) || (!A2) || (!Q1) || (!Q2) ){
printf("Out of Memory \n ");
return -2;
}
MORSE_Disable(MORSE_AUTOTUNING);
MORSE_Set(MORSE_TILE_SIZE, NB);
MORSE_Set(MORSE_INNER_BLOCK_SIZE, IB);
MORSE_Alloc_Workspace_zgels(M, M, &T1, 1, 1);
MORSE_Alloc_Workspace_zgels(M, M, &T2, 1, 1);
eps = LAPACKE_dlamch('e');
/* Initialize A1, A2, and A */
LAPACKE_zlarnv_work(IONE, ISEED, MxM, A1);
LAPACKE_zlaset_work( LAPACK_COL_MAJOR, 'A', M, M, 0., 1., A2, M );
LAPACKE_zlacpy_work( LAPACK_COL_MAJOR, 'A', M, M, A1, M, A, LDA );
LAPACKE_zlacpy_work( LAPACK_COL_MAJOR, 'A', M, M, A2, M, A + M, LDA );
/* Factorize A */
MORSE_zgeqrfhqr( M, M, A1, M, T1 );
MORSE_ztpqrt( M, M, optid ? M : 0,
A1, M,
A2, M, T2 );
/* Generate the Q */
MORSE_ztpgqrt( M, M, M, (optid) ? M : 0,
A1, M, T1, A2, M, T2, Q1, M, Q2, M );
/* Copy Q in a single matrix */
Q = (MORSE_Complex64_t *)malloc(2*M*M*sizeof(MORSE_Complex64_t));
LAPACKE_zlacpy_work( LAPACK_COL_MAJOR, 'A', M, M, Q1, M, Q, LDA );
free(Q1);
LAPACKE_zlacpy_work( LAPACK_COL_MAJOR, 'A', M, M, Q2, M, Q + M, LDA );
free(Q2);
printf("\n");
printf("------ TESTS FOR CHAMELEON ZGELS ROUTINE ------- \n");
printf(" Size of the Matrix %d by %d\n", M, M);
printf("\n");
printf(" The matrix A is randomly generated for each test.\n");
printf("============\n");
printf(" The relative machine precision (eps) is to be %e \n",eps);
printf(" Computational tests pass if scaled residuals are less than 60.\n");
/* Check the orthogonality, factorization and the solution */
info_ortho = check_orthogonality( 2*M, M, Q, LDA, eps );
info_factorization = check_factorization( 2*M, M, A, LDA, A1, M, Q, LDA, eps );
if ((info_factorization == 0) & (info_ortho == 0)) {
printf("***************************************************\n");
printf(" ---- TESTING ZGELS ...................... PASSED !\n");
printf("***************************************************\n");
}
else {
printf("************************************************\n");
printf(" - TESTING ZGELS ... FAILED !\n"); hres++;
printf("************************************************\n");
}
free(A); free(A1); free(A2); free(Q);
MORSE_Dealloc_Workspace( &T1 );
MORSE_Dealloc_Workspace( &T2 );
return hres;
}
/*-------------------------------------------------------------------
* Check the orthogonality of Q
*/
static int
check_orthogonality( int M, int N,
const MORSE_Complex64_t *Q, int LDQ,
double eps )
{
MORSE_Complex64_t *Id;
double alpha, beta;
double normQ;
int info_ortho;
int i;
int minMN = min(M, N);
double *work = (double *)malloc(minMN*sizeof(double));
alpha = 1.0;
beta = -1.0;
/* Build the idendity matrix */
Id = (MORSE_Complex64_t *) malloc(minMN*minMN*sizeof(MORSE_Complex64_t));
LAPACKE_zlaset_work(LAPACK_COL_MAJOR, 'A', minMN, minMN, 0., 1., Id, minMN );
/* Perform Id - Q'Q */
if (M >= N)
cblas_zherk(CblasColMajor, CblasUpper, CblasConjTrans, N, M, beta, Q, LDQ, alpha, Id, N);
else
cblas_zherk(CblasColMajor, CblasUpper, CblasNoTrans, M, N, beta, Q, LDQ, alpha, Id, M);
normQ = LAPACKE_zlansy_work( LAPACK_COL_MAJOR, 'I', 'U', minMN, Id, minMN, work );
printf("============\n");
printf("Checking the orthogonality of Q \n");
printf("||Id-Q'*Q||_oo / (N*eps) = %e \n", normQ/(minMN*eps));
if ( isnan(normQ / (minMN * eps)) || isinf(normQ / (minMN * eps)) || (normQ / (minMN * eps) > 60.0) ) {
printf("-- Orthogonality is suspicious ! \n");
info_ortho=1;
}
else {
printf("-- Orthogonality is CORRECT ! \n");
info_ortho=0;
}
free(work); free(Id);
return info_ortho;
}
/*------------------------------------------------------------
* Check the factorization QR
*/
static int
check_factorization(int M, int N,
const MORSE_Complex64_t *A, int LDA,
const MORSE_Complex64_t *R, int LDR,
MORSE_Complex64_t *Q, int LDQ,
double eps )
{
double Anorm, Rnorm;
MORSE_Complex64_t alpha, beta;
int info_factorization;
int i,j;
double *work = (double *)malloc(max(M,N)*sizeof(double));
alpha = 1.0;
beta = 0.0;
if (M >= N) {
/* Perform Q = Q * R */
cblas_ztrmm( CblasColMajor, CblasRight, CblasUpper, CblasNoTrans, CblasNonUnit, M, N, CBLAS_SADDR(alpha), R, LDR, Q, LDQ);
}
else {
/* Perform Q = L * Q */
cblas_ztrmm( CblasColMajor, CblasLeft, CblasLower, CblasNoTrans, CblasNonUnit, M, N, CBLAS_SADDR(alpha), R, LDR, Q, LDQ);
}
/* Compute the Residual */
CORE_zgeadd( MorseNoTrans, M, N, -1., A, LDA, 1., Q, LDQ );
Rnorm = LAPACKE_zlange_work( LAPACK_COL_MAJOR, 'I', M, N, Q, LDQ, work );
Anorm = LAPACKE_zlange_work( LAPACK_COL_MAJOR, 'I', M, N, A, LDA, work );
if (M >= N) {
printf("============\n");
printf("Checking the QR Factorization \n");
printf("-- ||A-QR||_oo/(||A||_oo.N.eps) = %e \n",Rnorm/(Anorm*N*eps));
}
else {
printf("============\n");
printf("Checking the LQ Factorization \n");
printf("-- ||A-LQ||_oo/(||A||_oo.N.eps) = %e \n",Rnorm/(Anorm*N*eps));
}
if (isnan(Rnorm / (Anorm * N *eps)) || isinf(Rnorm / (Anorm * N *eps)) || (Rnorm / (Anorm * N * eps) > 60.0) ) {
printf("-- Factorization is suspicious ! \n");
info_factorization = 1;
}
else {
printf("-- Factorization is CORRECT ! \n");
info_factorization = 0;
}
free(work);
return info_factorization;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment