-
Mathieu Faverge authoredMathieu Faverge authored
codelet_zgelqt.c 4.95 KiB
/**
*
* @file starpu/codelet_zgelqt.c
*
* @copyright 2009-2014 The University of Tennessee and The University of
* Tennessee Research Foundation. All rights reserved.
* @copyright 2012-2018 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
* Univ. Bordeaux. All rights reserved.
*
***
*
* @brief Chameleon zgelqt StarPU codelet
*
* @version 1.0.0
* @comment This file has been automatically generated
* from Plasma 2.5.0 for CHAMELEON 1.0.0
* @author Hatem Ltaief
* @author Jakub Kurzak
* @author Mathieu Faverge
* @author Emmanuel Agullo
* @author Cedric Castagnede
* @date 2010-11-15
* @precisions normal z -> c d s
*
*/
#include "chameleon_starpu.h"
#include "runtime_codelet_z.h"
#if !defined(CHAMELEON_SIMULATION)
static void cl_zgelqt_cpu_func(void *descr[], void *cl_arg)
{
CHAMELEON_starpu_ws_t *h_work;
int m;
int n;
int ib;
CHAMELEON_Complex64_t *A;
int lda;
CHAMELEON_Complex64_t *T;
int ldt;
CHAMELEON_Complex64_t *TAU, *WORK;
A = (CHAMELEON_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[0]);
T = (CHAMELEON_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[1]);
TAU = (CHAMELEON_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[2]); /* max(m,n) + ib*n */
starpu_codelet_unpack_args(cl_arg, &m, &n, &ib, &lda, &ldt, &h_work);
WORK = TAU + chameleon_max( m, n );
CORE_zlaset( ChamUpperLower, ib, m, 0., 0., T, ldt );
CORE_zgelqt(m, n, ib, A, lda, T, ldt, TAU, WORK);
}
#endif /* !defined(CHAMELEON_SIMULATION) */
/*
* Codelet definition
*/
CODELETS_CPU(zgelqt, 3, cl_zgelqt_cpu_func)
/**
*
* @ingroup INSERT_TASK_Complex64_t
*
* CORE_zgelqt - computes a LQ factorization of a complex M-by-N tile A: A = L * Q.
*
* The tile Q is represented as a product of elementary reflectors
*
* Q = H(k)' . . . H(2)' H(1)', where k = min(M,N).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a complex scalar, and v is a complex vector with
* v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
* A(i,i+1:n), and tau in TAU(i).
*
*******************************************************************************
*
* @param[in] M
* The number of rows of the tile A. M >= 0.
*
* @param[in] N
* The number of columns of the tile A. N >= 0.
*
* @param[in] IB
* The inner-blocking size. IB >= 0.
*
* @param[in,out] A
* On entry, the M-by-N tile A.
* On exit, the elements on and below the diagonal of the array
* contain the M-by-min(M,N) lower trapezoidal tile L (L is
* lower triangular if M <= N); the elements above the diagonal,
* with the array TAU, represent the unitary tile Q as a
* product of elementary reflectors (see Further Details).
*
* @param[in] LDA
* The leading dimension of the array A. LDA >= max(1,M).
*
* @param[out] T
* The IB-by-N triangular factor T of the block reflector.
* T is upper triangular by block (economic storage);
* The rest of the array is not referenced.
*
* @param[in] LDT
* The leading dimension of the array T. LDT >= IB.
*
* @param[out] TAU
* The scalar factors of the elementary reflectors (see Further
* Details).
*
* @param[out] WORK
*
*******************************************************************************
*
* @return
* \retval CHAMELEON_SUCCESS successful exit
* \retval <0 if -i, the i-th argument had an illegal value
*
*/
void INSERT_TASK_zgelqt(const RUNTIME_option_t *options,
int m, int n, int ib, int nb,
const CHAM_desc_t *A, int Am, int An, int lda,
const CHAM_desc_t *T, int Tm, int Tn, int ldt)
{
(void)nb;
struct starpu_codelet *codelet = &cl_zgelqt;
void (*callback)(void*) = options->profiling ? cl_zgelqt_callback : NULL;
CHAMELEON_starpu_ws_t *h_work = (CHAMELEON_starpu_ws_t*)(options->ws_host);
CHAMELEON_BEGIN_ACCESS_DECLARATION;
CHAMELEON_ACCESS_RW(A, Am, An);
CHAMELEON_ACCESS_W(T, Tm, Tn);
CHAMELEON_END_ACCESS_DECLARATION;
starpu_insert_task(
starpu_mpi_codelet(codelet),
STARPU_VALUE, &m, sizeof(int),
STARPU_VALUE, &n, sizeof(int),
STARPU_VALUE, &ib, sizeof(int),
STARPU_RW, RTBLKADDR(A, CHAMELEON_Complex64_t, Am, An),
STARPU_VALUE, &lda, sizeof(int),
STARPU_W, RTBLKADDR(T, CHAMELEON_Complex64_t, Tm, Tn),
STARPU_VALUE, &ldt, sizeof(int),
/* max( nb * (ib+1), ib * (ib+nb) ) */
STARPU_SCRATCH, options->ws_worker,
/* /\* ib*n + 3*ib*ib + max(m,n) *\/ */
STARPU_VALUE, &h_work, sizeof(CHAMELEON_starpu_ws_t *),
STARPU_PRIORITY, options->priority,
STARPU_CALLBACK, callback,
#if defined(CHAMELEON_CODELETS_HAVE_NAME)
STARPU_NAME, "zgelqt",
#endif
0);
}