-
Mathieu Faverge authoredMathieu Faverge authored
codelet_zgetrf_nopiv.c 4.00 KiB
/**
*
* @file codelet_zgetrf_nopiv.c
*
* @copyright 2009-2014 The University of Tennessee and The University of
* Tennessee Research Foundation. All rights reserved.
* @copyright 2012-2016 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
* Univ. Bordeaux. All rights reserved.
*
***
*
* MORSE codelets kernel
* MORSE is a software package provided by Univ. of Tennessee,
* Univ. of California Berkeley and Univ. of Colorado Denver
*
* @version 1.0.0
* @author Omar Zenati
* @author Mathieu Faverge
* @author Emmanuel Agullo
* @author Cedric Castagnede
* @date 2013-02-01
* @precisions normal z -> c d s
*
**/
#include "chameleon_quark.h"
#include "chameleon/morse_tasks_z.h"
#include "coreblas/coreblas_z.h"
void CORE_zgetrf_nopiv_quark(Quark *quark)
{
int m;
int n;
int ib;
MORSE_Complex64_t *A;
int lda;
MORSE_sequence_t *sequence;
MORSE_request_t *request;
int iinfo;
int info;
quark_unpack_args_8(quark, m, n, ib, A, lda, sequence, request, iinfo);
CORE_zgetrf_nopiv(m, n, ib, A, lda, &info);
if ( info != MORSE_SUCCESS ) {
RUNTIME_sequence_flush( (MORSE_context_t*)quark, sequence, request, iinfo+info );
}
}
/***************************************************************************//**
*
* @ingroup CORE_MORSE_Complex64_t
*
* CORE_zgetrf_nopiv computes an LU factorization of a general diagonal
* dominant M-by-N matrix A witout pivoting.
*
* The factorization has the form
* A = L * U
* where L is lower triangular with unit
* diagonal elements (lower trapezoidal if m > n), and U is upper
* triangular (upper trapezoidal if m < n).
*
* This is the right-looking Level 3 BLAS version of the algorithm.
* WARNING: Your matrix need to be diagonal dominant if you want to call this
* routine safely.
*
*******************************************************************************
*
* @param[in] M
* The number of rows of the matrix A. M >= 0.
*
* @param[in] N
* The number of columns of the matrix A. N >= 0.
*
* @param[in] IB
* The block size to switch between blocked and unblocked code.
*
* @param[in,out] A
* On entry, the M-by-N matrix to be factored.
* On exit, the factors L and U from the factorization
* A = P*L*U; the unit diagonal elements of L are not stored.
*
* @param[in] LDA
* The leading dimension of the array A. LDA >= max(1,M).
*
*******************************************************************************
*
* @return
* \retval MORSE_SUCCESS successful exit
* \retval <0 if INFO = -k, the k-th argument had an illegal value
* \retval >0 if INFO = k, U(k,k) is exactly zero. The factorization
* has been completed, but the factor U is exactly
* singular, and division by zero will occur if it is used
* to solve a system of equations.
*
******************************************************************************/
void MORSE_TASK_zgetrf_nopiv(const MORSE_option_t *options,
int m, int n, int ib, int nb,
const MORSE_desc_t *A, int Am, int An, int lda,
int iinfo)
{
quark_option_t *opt = (quark_option_t*)(options->schedopt);
DAG_CORE_GETRF;
QUARK_Insert_Task(
opt->quark, CORE_zgetrf_nopiv_quark, (Quark_Task_Flags*)opt,
sizeof(int), &m, VALUE,
sizeof(int), &n, VALUE,
sizeof(int), &ib, VALUE,
sizeof(MORSE_Complex64_t)*nb*nb, RTBLKADDR(A, MORSE_Complex64_t, Am, An), INOUT,
sizeof(int), &lda, VALUE,
sizeof(MORSE_sequence_t*), &(options->sequence), VALUE,
sizeof(MORSE_request_t*), &(options->request), VALUE,
sizeof(int), &iinfo, VALUE,
0);
}