-
Mathieu Faverge authoredMathieu Faverge authored
codelet_zgeqrt.c 4.28 KiB
/**
*
* @copyright (c) 2009-2014 The University of Tennessee and The University
* of Tennessee Research Foundation.
* All rights reserved.
* @copyright (c) 2012-2014 Inria. All rights reserved.
* @copyright (c) 2012-2014, 2016 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved.
*
**/
/**
*
* @file codelet_zgeqrt.c
*
* MORSE codelets kernel
* MORSE is a software package provided by Univ. of Tennessee,
* Univ. of California Berkeley and Univ. of Colorado Denver
*
* @version 2.5.0
* @comment This file has been automatically generated
* from Plasma 2.5.0 for MORSE 1.0.0
* @author Hatem Ltaief
* @author Jakub Kurzak
* @author Mathieu Faverge
* @author Emmanuel Agullo
* @author Cedric Castagnede
* @date 2010-11-15
* @precisions normal z -> c d s
*
**/
#include "chameleon_quark.h"
#include "chameleon/morse_tasks_z.h"
#include "coreblas/coreblas_z.h"
void CORE_zgeqrt_quark(Quark *quark)
{
int m;
int n;
int ib;
MORSE_Complex64_t *A;
int lda;
MORSE_Complex64_t *T;
int ldt;
MORSE_Complex64_t *TAU;
MORSE_Complex64_t *WORK;
quark_unpack_args_9(quark, m, n, ib, A, lda, T, ldt, TAU, WORK);
CORE_zgeqrt(m, n, ib, A, lda, T, ldt, TAU, WORK);
}
/**
*
* @ingroup CORE_MORSE_Complex64_t
*
* CORE_zgeqrt computes a QR factorization of a complex M-by-N tile A:
* A = Q * R.
*
* The tile Q is represented as a product of elementary reflectors
*
* Q = H(1) H(2) . . . H(k), where k = min(M,N).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a complex scalar, and v is a complex vector with
* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
* and tau in TAU(i).
*
*******************************************************************************
*
* @param[in] M
* The number of rows of the tile A. M >= 0.
*
* @param[in] N
* The number of columns of the tile A. N >= 0.
*
* @param[in] IB
* The inner-blocking size. IB >= 0.
*
* @param[in,out] A
* On entry, the M-by-N tile A.
* On exit, the elements on and above the diagonal of the array
* contain the min(M,N)-by-N upper trapezoidal tile R (R is
* upper triangular if M >= N); the elements below the diagonal,
* with the array TAU, represent the unitary tile Q as a
* product of elementary reflectors (see Further Details).
*
* @param[in] LDA
* The leading dimension of the array A. LDA >= max(1,M).
*
* @param[out] T
* The IB-by-N triangular factor T of the block reflector.
* T is upper triangular by block (economic storage);
* The rest of the array is not referenced.
*
* @param[in] LDT
* The leading dimension of the array T. LDT >= IB.
*
* @param[out] TAU
* The scalar factors of the elementary reflectors (see Further
* Details).
*
* @param[out] WORK
*
*******************************************************************************
*
* @return
* \retval MORSE_SUCCESS successful exit
* \retval <0 if -i, the i-th argument had an illegal value
*
******************************************************************************/
void MORSE_TASK_zgeqrt(const MORSE_option_t *options,
int m, int n, int ib, int nb,
const MORSE_desc_t *A, int Am, int An, int lda,
const MORSE_desc_t *T, int Tm, int Tn, int ldt)
{
quark_option_t *opt = (quark_option_t*)(options->schedopt);
DAG_CORE_GEQRT;
QUARK_Insert_Task(opt->quark, CORE_zgeqrt_quark, (Quark_Task_Flags*)opt,
sizeof(int), &m, VALUE,
sizeof(int), &n, VALUE,
sizeof(int), &ib, VALUE,
sizeof(MORSE_Complex64_t)*nb*nb, RTBLKADDR(A, MORSE_Complex64_t, Am, An), INOUT,
sizeof(int), &lda, VALUE,
sizeof(MORSE_Complex64_t)*ib*nb, RTBLKADDR(T, MORSE_Complex64_t, Tm, Tn), OUTPUT,
sizeof(int), &ldt, VALUE,
sizeof(MORSE_Complex64_t)*nb, NULL, SCRATCH,
sizeof(MORSE_Complex64_t)*ib*nb, NULL, SCRATCH,
0);
}