Mentions légales du service

Skip to content
Snippets Groups Projects
codelet_ztsmlq.c 11.77 KiB
/**
 *
 * @copyright (c) 2009-2014 The University of Tennessee and The University
 *                          of Tennessee Research Foundation.
 *                          All rights reserved.
 * @copyright (c) 2012-2014 Inria. All rights reserved.
 * @copyright (c) 2012-2014 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved.
 *
 **/

/**
 *
 * @file codelet_ztsmlq.c
 *
 *  MORSE codelets kernel
 *  MORSE is a software package provided by Univ. of Tennessee,
 *  Univ. of California Berkeley and Univ. of Colorado Denver
 *
 * @version 2.5.0
 * @comment This file has been automatically generated
 *          from Plasma 2.5.0 for MORSE 1.0.0
 * @author Hatem Ltaief
 * @author Jakub Kurzak
 * @author Azzam Haidar
 * @author Dulceneia Becker
 * @author Mathieu Faverge
 * @author Emmanuel Agullo
 * @author Cedric Castagnede
 * @date 2010-11-15
 * @precisions normal z -> c d s
 *
 **/
#include "morse_starpu.h"
#include "codelet_z.h"

/**
 *
 * @ingroup CORE_MORSE_Complex64_t
 *
 *  CORE_ztsmlq overwrites the general complex M1-by-N1 tile A1 and
 *  M2-by-N2 tile A2 with
 *
 *                        SIDE = 'L'        SIDE = 'R'
 *    TRANS = 'N':         Q * | A1 |     | A1 A2 | * Q
 *                             | A2 |
 *
 *    TRANS = 'C':      Q**H * | A1 |     | A1 A2 | * Q**H
 *                             | A2 |
 *
 *  where Q is a complex unitary matrix defined as the product of k
 *  elementary reflectors
 *
 *    Q = H(k)' . . . H(2)' H(1)'
 *
 *  as returned by CORE_ZTSLQT.
 *
 *******************************************************************************
 *
 * @param[in] side
 *         @arg MorseLeft  : apply Q or Q**H from the Left;
 *         @arg MorseRight : apply Q or Q**H from the Right.
 *
 * @param[in] trans
 *         @arg MorseNoTrans   :  No transpose, apply Q;
 *         @arg MorseConjTrans :  ConjTranspose, apply Q**H.
 *
 * @param[in] M1
 *         The number of rows of the tile A1. M1 >= 0.
 *
 * @param[in] N1
 *         The number of columns of the tile A1. N1 >= 0.
 *
 * @param[in] M2
 *         The number of rows of the tile A2. M2 >= 0.
 *         M2 = M1 if side == MorseRight.
 *
 * @param[in] N2
 *         The number of columns of the tile A2. N2 >= 0.
 *         N2 = N1 if side == MorseLeft.
 *
 * @param[in] K
 *         The number of elementary reflectors whose product defines
 *         the matrix Q.
 *
 * @param[in] IB
 *         The inner-blocking size.  IB >= 0.
 *
 * @param[in,out] A1
 *         On entry, the M1-by-N1 tile A1.
 *         On exit, A1 is overwritten by the application of Q.
 *
 * @param[in] LDA1
 *         The leading dimension of the array A1. LDA1 >= max(1,M1).
 *
 * @param[in,out] A2
 *         On entry, the M2-by-N2 tile A2.
 *         On exit, A2 is overwritten by the application of Q.
 *
 * @param[in] LDA2
 *         The leading dimension of the tile A2. LDA2 >= max(1,M2).
 *
 * @param[in] V
 *         The i-th row must contain the vector which defines the
 *         elementary reflector H(i), for i = 1,2,...,k, as returned by
 *         CORE_ZTSLQT in the first k rows of its array argument V.
 *
 * @param[in] LDV
 *         The leading dimension of the array V. LDV >= max(1,K).
 *
 * @param[in] T
 *         The IB-by-N1 triangular factor T of the block reflector.
 *         T is upper triangular by block (economic storage);
 *         The rest of the array is not referenced.
 *
 * @param[in] LDT
 *         The leading dimension of the array T. LDT >= IB.
 *
 * @param[out] WORK
 *         Workspace array of size
 *             LDWORK-by-M1 if side == MorseLeft
 *             LDWORK-by-IB if side == MorseRight
 *
 * @param[in] LDWORK
 *         The leading dimension of the array WORK.
 *             LDWORK >= max(1,IB) if side == MorseLeft
 *             LDWORK >= max(1,N1) if side == MorseRight
 *
 *******************************************************************************
 *
 * @return
 *          \retval MORSE_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 ******************************************************************************/

void MORSE_TASK_ztsmlq(MORSE_option_t *options,
                       MORSE_enum side, MORSE_enum trans,
                       int m1, int n1, int m2, int n2, int k, int ib, int nb,
                       MORSE_desc_t *A1, int A1m, int A1n, int lda1,
                       MORSE_desc_t *A2, int A2m, int A2n, int lda2,
                       MORSE_desc_t *V, int Vm, int Vn, int ldv,
                       MORSE_desc_t *T, int Tm, int Tn, int ldt)
{
    struct starpu_codelet *codelet = &cl_ztsmlq;
    void (*callback)(void*) = options->profiling ? cl_ztsmlq_callback : NULL;
    int ldwork = side == MorseLeft ? ib : nb;

    if ( morse_desc_islocal( A1, A1m, A1n ) ||
         morse_desc_islocal( A2, A2m, A2n ) ||
         morse_desc_islocal( V,  Vm,  Vn  ) ||
         morse_desc_islocal( T,  Tm,  Tn  ) )
    {
        starpu_insert_task(
            codelet,
            STARPU_VALUE,    &side,              sizeof(MORSE_enum),
            STARPU_VALUE,    &trans,             sizeof(MORSE_enum),
            STARPU_VALUE,    &m1,                sizeof(int),
            STARPU_VALUE,    &n1,                sizeof(int),
            STARPU_VALUE,    &m2,                sizeof(int),
            STARPU_VALUE,    &n2,                sizeof(int),
            STARPU_VALUE,    &k,                 sizeof(int),
            STARPU_VALUE,    &ib,                sizeof(int),
            STARPU_RW,        RTBLKADDR(A1, MORSE_Complex64_t, A1m, A1n),
            STARPU_VALUE,    &lda1,              sizeof(int),
            STARPU_RW,        RTBLKADDR(A2, MORSE_Complex64_t, A2m, A2n),
            STARPU_VALUE,    &lda2,              sizeof(int),
            STARPU_R,         RTBLKADDR(V, MORSE_Complex64_t, Vm, Vn),
            STARPU_VALUE,    &ldv,               sizeof(int),
            STARPU_R,         RTBLKADDR(T, MORSE_Complex64_t, Tm, Tn),
            STARPU_VALUE,    &ldt,               sizeof(int),
            /* max( ib*nb, 2*ib*nb ) */
            STARPU_SCRATCH,   options->ws_worker,
            STARPU_VALUE,    &ldwork,            sizeof(int),
            STARPU_PRIORITY,  options->priority,
            STARPU_CALLBACK,  callback,
            0);
    }
}


static void cl_ztsmlq_cpu_func(void *descr[], void *cl_arg)
{
    MORSE_enum side;
    MORSE_enum trans;
    int m1;
    int n1;
    int m2;
    int n2;
    int k;
    int ib;
    MORSE_Complex64_t *A1;
    int lda1;
    MORSE_Complex64_t *A2;
    int lda2;
    MORSE_Complex64_t *V;
    int ldv;
    MORSE_Complex64_t *T;
    int ldt;
    MORSE_Complex64_t *WORK;
    int ldwork;

    A1   = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[0]);
    A2   = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[1]);
    V    = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[2]);
    T    = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[3]);
    WORK = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[4]); /* ib * nb */

    starpu_codelet_unpack_args(cl_arg, &side, &trans, &m1, &n1, &m2, &n2, &k, &ib,
                               &lda1, &lda2, &ldv, &ldt, &ldwork);
    CORE_ztsmlq(side, trans, m1, n1, m2, n2, k, ib,
                A1, lda1, A2, lda2, V, ldv, T, ldt, WORK, ldwork);
}

#if defined(CHAMELEON_USE_MAGMA)

magma_int_t
magma_ztsmlq_gpu( magma_side_t side, magma_trans_t trans,
                  magma_int_t M1, magma_int_t N1,
                  magma_int_t M2, magma_int_t N2,
                  magma_int_t K, magma_int_t IB,
                  magmaDoubleComplex *A1, magma_int_t LDA1,
                  magmaDoubleComplex *A2, magma_int_t LDA2,
                  const magmaDoubleComplex *V, magma_int_t LDV,
                  const magmaDoubleComplex *T, magma_int_t LDT,
                        magmaDoubleComplex *WORK,  magma_int_t LDWORK,
                        magmaDoubleComplex *WORKC, magma_int_t LDWORKC,
                  CUstream stream)
{
    int i, i1, i3;
    int NW;
    int kb;
    int ic = 0;
    int jc = 0;
    int mi = M1;
    int ni = N1;

    /* Check input arguments */
    if ((side != MagmaLeft) && (side != MagmaRight)) {
        return -1;
    }

    /* NW is the minimum dimension of WORK */
    if (side == MagmaLeft) {
        NW = IB;
    }
    else {
        NW = N1;
    }

    if ((trans != MagmaNoTrans) && (trans != MagmaConjTrans)) {
        return -2;
    }
    if (M1 < 0) {
        return -3;
    }
    if (N1 < 0) {
        return -4;
    }
    if ( (M2 < 0) ||
         ( (M2 != M1) && (side == MagmaRight) ) ){
        return -5;
    }
    if ( (N2 < 0) ||
         ( (N2 != N1) && (side == MagmaLeft) ) ){
        return -6;
    }
    if ((K < 0) ||
        ( (side == MagmaLeft)  && (K > M1) ) ||
        ( (side == MagmaRight) && (K > N1) ) ) {
        return -7;
    }
    if (IB < 0) {
        return -8;
    }
    if (LDA1 < max(1,M1)){
        return -10;
    }
    if (LDA2 < max(1,M2)){
        return -12;
    }
    if (LDV < max(1,K)){
        return -14;
    }
    if (LDT < max(1,IB)){
        return -16;
    }
    if (LDWORK < max(1,NW)){
        return -18;
    }

    /* Quick return */
    if ((M1 == 0) || (N1 == 0) || (M2 == 0) || (N2 == 0) || (K == 0) || (IB == 0))
        return MAGMA_SUCCESS;

    if (((side == MagmaLeft) && (trans == MagmaNoTrans))
        || ((side == MagmaRight) && (trans != MagmaNoTrans))) {
        i1 = 0;
        i3 = IB;
    }
    else {
        i1 = ((K-1) / IB)*IB;
        i3 = -IB;
    }

    if (trans == MagmaNoTrans) {
        trans = MagmaConjTrans;
    }
    else {
        trans = MagmaNoTrans;
    }

    for(i = i1; (i > -1) && (i < K); i += i3) {
        kb = min(IB, K-i);

        if (side == MagmaLeft) {
            /*
             * H or H' is applied to C(i:m,1:n)
             */
            mi = M1 - i;
            ic = i;
        }
        else {
            /*
             * H or H' is applied to C(1:m,i:n)
             */
            ni = N1 - i;
            jc = i;
        }

        /*
         * Apply H or H' (NOTE: CORE_zparfb used to be CORE_ztsrfb)
         */
        magma_zparfb_gpu( side, trans, MagmaForward, MagmaRowwise,
                          mi, ni, M2, N2, kb, 0,
                          A1 + LDA1*jc+ic, LDA1,
                          A2, LDA2,
                          V + i, LDV,
                          T + LDT*i, LDT,
                          WORK, LDWORK, WORKC, LDWORKC, stream );
    }
    return MAGMA_SUCCESS;
}

static void cl_ztsmlq_cuda_func(void *descr[], void *cl_arg)
{
    MORSE_enum side;
    MORSE_enum trans;
    int m1;
    int n1;
    int m2;
    int n2;
    int k;
    int ib;
    cuDoubleComplex *A1;
    int lda1;
    cuDoubleComplex *A2;
    int lda2;
    cuDoubleComplex *V;
    int ldv;
    cuDoubleComplex *T;
    int ldt;
    cuDoubleComplex *W, *WC;
    int ldwork;
    int ldworkc;
    CUstream stream;

    A1 = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[0]);
    A2 = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[1]);
    V  = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[2]);
    T  = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[3]);
    W  = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[4]); /* 2*ib*nb */

    starpu_codelet_unpack_args(cl_arg, &side, &trans, &m1, &n1, &m2, &n2, &k, &ib,
                               &lda1, &lda2, &ldv, &ldt, &ldwork);

    WC = W + ib * ldwork;
    ldworkc = (side == MorseLeft) ? m1 : ib;

    stream = starpu_cuda_get_local_stream();
    cublasSetKernelStream( stream );

    magma_ztsmlq_gpu( side, trans, m1, n1, m2, n2, k, ib,
                      A1, lda1, A2, lda2, V, ldv, T, ldt,
                      W, ldwork, WC, ldworkc, stream );

#ifndef STARPU_CUDA_ASYNC
    cudaStreamSynchronize( stream );
#endif
}

#endif

/*
 * Codelet definition
 */
#if defined(CHAMELEON_USE_MAGMA) || defined(CHAMELEON_SIMULATION)
CODELETS(ztsmlq, 5, cl_ztsmlq_cpu_func, cl_ztsmlq_cuda_func, STARPU_CUDA_ASYNC)
#else
CODELETS_CPU(ztsmlq, 5, cl_ztsmlq_cpu_func)
#endif