-
PRUVOST Florent authored
change the way we include our own header files --> relative to the root - when plasma is in the same env, chameleon can take some headers not belonging to it (ex: #include descriptor.h, this file states in plasma install dir also) which make compilation errors
PRUVOST Florent authoredchange the way we include our own header files --> relative to the root - when plasma is in the same env, chameleon can take some headers not belonging to it (ex: #include descriptor.h, this file states in plasma install dir also) which make compilation errors
core_zgeqrt.c 4.78 KiB
/**
*
* @copyright (c) 2009-2014 The University of Tennessee and The University
* of Tennessee Research Foundation.
* All rights reserved.
* @copyright (c) 2012-2014 Inria. All rights reserved.
* @copyright (c) 2012-2014 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved.
*
**/
/**
*
* @file core_zgeqrt.c
*
* PLASMA core_blas kernel
* PLASMA is a software package provided by Univ. of Tennessee,
* Univ. of California Berkeley and Univ. of Colorado Denver
*
* @version 2.5.0
* @comment This file has been automatically generated
* from Plasma 2.5.0 for MORSE 1.0.0
* @author Hatem Ltaief
* @author Jakub Kurzak
* @author Mathieu Faverge
* @author Emmanuel Agullo
* @author Cedric Castagnede
* @date 2010-11-15
* @precisions normal z -> c d s
*
**/
#include "coreblas/include/lapacke.h"
#include "coreblas/include/coreblas.h"
/***************************************************************************//**
*
* @ingroup CORE_MORSE_Complex64_t
*
* CORE_zgeqrt computes a QR factorization of a complex M-by-N tile A:
* A = Q * R.
*
* The tile Q is represented as a product of elementary reflectors
*
* Q = H(1) H(2) . . . H(k), where k = min(M,N).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a complex scalar, and v is a complex vector with
* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
* and tau in TAU(i).
*
*******************************************************************************
*
* @param[in] M
* The number of rows of the tile A. M >= 0.
*
* @param[in] N
* The number of columns of the tile A. N >= 0.
*
* @param[in] IB
* The inner-blocking size. IB >= 0.
*
* @param[in,out] A
* On entry, the M-by-N tile A.
* On exit, the elements on and above the diagonal of the array
* contain the min(M,N)-by-N upper trapezoidal tile R (R is
* upper triangular if M >= N); the elements below the diagonal,
* with the array TAU, represent the unitary tile Q as a
* product of elementary reflectors (see Further Details).
*
* @param[in] LDA
* The leading dimension of the array A. LDA >= max(1,M).
*
* @param[out] T
* The IB-by-N triangular factor T of the block reflector.
* T is upper triangular by block (economic storage);
* The rest of the array is not referenced.
*
* @param[in] LDT
* The leading dimension of the array T. LDT >= IB.
*
* @param[out] TAU
* The scalar factors of the elementary reflectors (see Further
* Details).
*
* @param[out] WORK
*
*******************************************************************************
*
* @return
* \retval MORSE_SUCCESS successful exit
* \retval <0 if -i, the i-th argument had an illegal value
*
******************************************************************************/
int CORE_zgeqrt(int M, int N, int IB,
MORSE_Complex64_t *A, int LDA,
MORSE_Complex64_t *T, int LDT,
MORSE_Complex64_t *TAU,
MORSE_Complex64_t *WORK)
{
int i, k, sb;
/* Check input arguments */
if (M < 0) {
coreblas_error(1, "Illegal value of M");
return -1;
}
if (N < 0) {
coreblas_error(2, "Illegal value of N");
return -2;
}
if ((IB < 0) || ( (IB == 0) && ((M > 0) && (N > 0)) )) {
coreblas_error(3, "Illegal value of IB");
return -3;
}
if ((LDA < max(1,M)) && (M > 0)) {
coreblas_error(5, "Illegal value of LDA");
return -5;
}
if ((LDT < max(1,IB)) && (IB > 0)) {
coreblas_error(7, "Illegal value of LDT");
return -7;
}
/* Quick return */
if ((M == 0) || (N == 0) || (IB == 0))
return MORSE_SUCCESS;
k = min(M, N);
for(i = 0; i < k; i += IB) {
sb = min(IB, k-i);
LAPACKE_zgeqr2_work(LAPACK_COL_MAJOR, M-i, sb,
&A[LDA*i+i], LDA, &TAU[i], WORK);
LAPACKE_zlarft_work(LAPACK_COL_MAJOR,
morse_lapack_const(MorseForward),
morse_lapack_const(MorseColumnwise),
M-i, sb,
&A[LDA*i+i], LDA, &TAU[i],
&T[LDT*i], LDT);
if (N > i+sb) {
LAPACKE_zlarfb_work(
LAPACK_COL_MAJOR,
morse_lapack_const(MorseLeft),
morse_lapack_const(MorseConjTrans),
morse_lapack_const(MorseForward),
morse_lapack_const(MorseColumnwise),
M-i, N-i-sb, sb,
&A[LDA*i+i], LDA,
&T[LDT*i], LDT,
&A[LDA*(i+sb)+i], LDA,
WORK, N-i-sb);
}
}
return MORSE_SUCCESS;
}