-
Mathieu Faverge authoredMathieu Faverge authored
zgesv_nopiv.c 11.10 KiB
/**
*
* @copyright (c) 2009-2014 The University of Tennessee and The University
* of Tennessee Research Foundation.
* All rights reserved.
* @copyright (c) 2012-2014 Inria. All rights reserved.
* @copyright (c) 2012-2014 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved.
*
**/
/**
* @file zgesv_nopiv.c
*
* MORSE computational routines
* Release Date: November, 15th 2009
* MORSE is a software package provided by Univ. of Tennessee,
* Univ. of California Berkeley and Univ. of Colorado Denver
*
* @version 2.5.0
* @comment This file has been automatically generated
* from Plasma 2.5.0 for MORSE 1.0.0
* @author Jakub Kurzak
* @author Mathieu Faverge
* @author Emmanuel Agullo
* @author Cedric Castagnede
* @date 2010-11-15
* @precisions normal z -> s d c
*
**/
#include "control/common.h"
/***************************************************************************//**
*
* @ingroup MORSE_Complex64_t
*
* MORSE_zgesv_nopiv - Computes the solution to a system of linear equations A * X = B,
* where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
* The tile LU decomposition with partial tile pivoting and row interchanges is used to factor A.
* The factored form of A is then used to solve the system of equations A * X = B.
*
*******************************************************************************
*
* @param[in] N
* The number of linear equations, i.e., the order of the matrix A. N >= 0.
*
* @param[in] NRHS
* The number of right hand sides, i.e., the number of columns of the matrix B.
* NRHS >= 0.
*
* @param[in,out] A
* On entry, the N-by-N coefficient matrix A.
* On exit, the tile L and U factors from the factorization (not equivalent to LAPACK).
*
* @param[in] LDA
* The leading dimension of the array A. LDA >= max(1,N).
*
* @param[out] descL
* On exit, auxiliary factorization data, related to the tile L factor,
* necessary to solve the system of equations.
*
* @param[out] IPIV
* On exit, the pivot indices that define the permutations (not equivalent to LAPACK).
*
* @param[in,out] B
* On entry, the N-by-NRHS matrix of right hand side matrix B.
* On exit, if return value = 0, the N-by-NRHS solution matrix X.
*
* @param[in] LDB
* The leading dimension of the array B. LDB >= max(1,N).
*
*******************************************************************************
*
* @return
* \retval MORSE_SUCCESS successful exit
* \retval <0 if -i, the i-th argument had an illegal value
* \retval >0 if i, U(i,i) is exactly zero. The factorization has been completed,
* but the factor U is exactly singular, so the solution could not be computed.
*
*******************************************************************************
*
* @sa MORSE_zgesv_nopiv_Tile
* @sa MORSE_zgesv_nopiv_Tile_Async
* @sa MORSE_cgesv_nopiv
* @sa MORSE_dgesv_nopiv
* @sa MORSE_sgesv_nopiv
*
******************************************************************************/
int MORSE_zgesv_nopiv(int N, int NRHS,
MORSE_Complex64_t *A, int LDA,
MORSE_Complex64_t *B, int LDB)
{
int NB;
int status;
MORSE_context_t *morse;
MORSE_sequence_t *sequence = NULL;
MORSE_request_t request = MORSE_REQUEST_INITIALIZER;
MORSE_desc_t descA, descB;
morse = morse_context_self();
if (morse == NULL) {
morse_error("MORSE_zgesv_nopiv", "MORSE not initialized");
return MORSE_ERR_NOT_INITIALIZED;
}
/* Check input arguments */
if (N < 0) {
morse_error("MORSE_zgesv_nopiv", "illegal value of N");
return -1;
}
if (NRHS < 0) {
morse_error("MORSE_zgesv_nopiv", "illegal value of NRHS");
return -2;
}
if (LDA < max(1, N)) {
morse_error("MORSE_zgesv_nopiv", "illegal value of LDA");
return -4;
}
if (LDB < max(1, N)) {
morse_error("MORSE_zgesv_nopiv", "illegal value of LDB");
return -8;
}
/* Quick return */
if (min(N, NRHS) == 0)
return MORSE_SUCCESS;
/* Tune NB & IB depending on M, N & NRHS; Set NBNB */
status = morse_tune(MORSE_FUNC_ZGESV, N, N, NRHS);
if (status != MORSE_SUCCESS) {
morse_error("MORSE_zgesv_nopiv", "morse_tune() failed");
return status;
}
/* Set NT & NTRHS */
NB = MORSE_NB;
morse_sequence_create(morse, &sequence);
/* if ( MORSE_TRANSLATION == MORSE_OUTOFPLACE ) {*/
morse_zooplap2tile( descA, A, NB, NB, LDA, N, 0, 0, N, N, sequence, &request,
morse_desc_mat_free(&(descA)) );
morse_zooplap2tile( descB, B, NB, NB, LDB, NRHS, 0, 0, N, NRHS, sequence, &request,
morse_desc_mat_free(&(descA)); morse_desc_mat_free(&(descB)));
/* } else {*/
/* morse_ziplap2tile( descA, A, NB, NB, LDA, N, 0, 0, N, N, */
/* sequence, &request);*/
/* morse_ziplap2tile( descB, B, NB, NB, LDB, NRHS, 0, 0, N, NRHS,*/
/* sequence, &request);*/
/* }*/
/* Call the tile interface */
MORSE_zgesv_nopiv_Tile_Async(&descA, &descB, sequence, &request);
/* if ( MORSE_TRANSLATION == MORSE_OUTOFPLACE ) {*/
morse_zooptile2lap(descA, A, NB, NB, LDA, N, sequence, &request);
morse_zooptile2lap(descB, B, NB, NB, LDB, NRHS, sequence, &request);
morse_sequence_wait(morse, sequence);
morse_desc_mat_free(&descA);
morse_desc_mat_free(&descB);
/* } else {*/
/* morse_ziptile2lap( descA, A, NB, NB, LDA, N, sequence, &request);*/
/* morse_ziptile2lap( descB, B, NB, NB, LDB, NRHS, sequence, &request);*/
/* morse_sequence_wait(morse, sequence);*/
/* }*/
status = sequence->status;
morse_sequence_destroy(morse, sequence);
return status;
}
/***************************************************************************//**
*
* @ingroup MORSE_Complex64_t_Tile
*
* MORSE_zgesv_nopiv_Tile - Solves a system of linear equations using the tile LU factorization.
* Tile equivalent of MORSE_zgetrf_nopiv().
* Operates on matrices stored by tiles.
* All matrices are passed through descriptors.
* All dimensions are taken from the descriptors.
*
*******************************************************************************
*
* @param[in,out] A
* On entry, the N-by-N coefficient matrix A.
* On exit, the tile L and U factors from the factorization (not equivalent to LAPACK).
*
* @param[in,out] B
* On entry, the N-by-NRHS matrix of right hand side matrix B.
* On exit, if return value = 0, the N-by-NRHS solution matrix X.
*
*******************************************************************************
*
* @return
* \retval MORSE_SUCCESS successful exit
* \retval >0 if i, U(i,i) is exactly zero. The factorization has been completed,
* but the factor U is exactly singular, so the solution could not be computed.
*
*******************************************************************************
*
* @sa MORSE_zgesv_nopiv
* @sa MORSE_zgesv_nopiv_Tile_Async
* @sa MORSE_cgesv_nopiv_Tile
* @sa MORSE_dgesv_nopiv_Tile
* @sa MORSE_sgesv_nopiv_Tile
* @sa MORSE_zcgesv_Tile
*
******************************************************************************/
int MORSE_zgesv_nopiv_Tile(MORSE_desc_t *A, MORSE_desc_t *B)
{
MORSE_context_t *morse;
MORSE_sequence_t *sequence = NULL;
MORSE_request_t request = MORSE_REQUEST_INITIALIZER;
int status;
morse = morse_context_self();
if (morse == NULL) {
morse_fatal_error("MORSE_zgesv_nopiv_Tile", "MORSE not initialized");
return MORSE_ERR_NOT_INITIALIZED;
}
morse_sequence_create(morse, &sequence);
MORSE_zgesv_nopiv_Tile_Async(A, B, sequence, &request);
morse_sequence_wait(morse, sequence);
RUNTIME_desc_getoncpu(A);
RUNTIME_desc_getoncpu(B);
status = sequence->status;
morse_sequence_destroy(morse, sequence);
return status;
}
/***************************************************************************//**
*
* @ingroup MORSE_Complex64_t_Tile_Async
*
* MORSE_zgesv_nopiv_Tile_Async - Solves a system of linear equations using the tile
* LU factorization.
* Non-blocking equivalent of MORSE_zgesv_nopiv_Tile().
* May return before the computation is finished.
* Allows for pipelining of operations at runtime.
*
*******************************************************************************
*
* @param[in] sequence
* Identifies the sequence of function calls that this call belongs to
* (for completion checks and exception handling purposes).
*
* @param[out] request
* Identifies this function call (for exception handling purposes).
*
*******************************************************************************
*
* @sa MORSE_zgesv_nopiv
* @sa MORSE_zgesv_nopiv_Tile
* @sa MORSE_cgesv_nopiv_Tile_Async
* @sa MORSE_dgesv_nopiv_Tile_Async
* @sa MORSE_sgesv_nopiv_Tile_Async
* @sa MORSE_zcgesv_Tile_Async
*
******************************************************************************/
int MORSE_zgesv_nopiv_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *B,
MORSE_sequence_t *sequence, MORSE_request_t *request)
{
MORSE_context_t *morse;
morse = morse_context_self();
if (morse == NULL) {
morse_fatal_error("MORSE_zgesv_nopiv_Tile", "MORSE not initialized");
return MORSE_ERR_NOT_INITIALIZED;
}
if (sequence == NULL) {
morse_fatal_error("MORSE_zgesv_nopiv_Tile", "NULL sequence");
return MORSE_ERR_UNALLOCATED;
}
if (request == NULL) {
morse_fatal_error("MORSE_zgesv_nopiv_Tile", "NULL request");
return MORSE_ERR_UNALLOCATED;
}
/* Check sequence status */
if (sequence->status == MORSE_SUCCESS)
request->status = MORSE_SUCCESS;
else
return morse_request_fail(sequence, request, MORSE_ERR_SEQUENCE_FLUSHED);
/* Check descriptors for correctness */
if (morse_desc_check(A) != MORSE_SUCCESS) {
morse_error("MORSE_zgesv_nopiv_Tile", "invalid first descriptor");
return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
}
if (morse_desc_check(B) != MORSE_SUCCESS) {
morse_error("MORSE_zgesv_nopiv_Tile", "invalid third descriptor");
return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
}
/* Check input arguments */
if (A->nb != A->mb || B->nb != B->mb) {
morse_error("MORSE_zgesv_nopiv_Tile", "only square tiles supported");
return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
}
/* Quick return */
/*
if (min(N, NRHS) == 0)
return MORSE_SUCCESS;
*/
morse_pzgetrf_nopiv(A, sequence, request);
morse_pztrsm(MorseLeft, MorseLower, MorseNoTrans, MorseUnit, (MORSE_Complex64_t)1.0, A, B, sequence, request);
morse_pztrsm(MorseLeft, MorseUpper, MorseNoTrans, MorseNonUnit, (MORSE_Complex64_t)1.0, A, B, sequence, request);
return MORSE_SUCCESS;
}