Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/**
*
* @copyright (c) 2009-2014 The University of Tennessee and The University
* of Tennessee Research Foundation.
* All rights reserved.
* @copyright (c) 2012-2014 Inria. All rights reserved.
* @copyright (c) 2012-2014 IPB. All rights reserved.
*
**/
/**
*
* @file codelet_zgetrf_incpiv.c
*
* MORSE codelets kernel
* MORSE is a software package provided by Univ. of Tennessee,
* Univ. of California Berkeley and Univ. of Colorado Denver
*
* @version 2.5.0
* @comment This file has been automatically generated
* from Plasma 2.5.0 for MORSE 1.0.0
* @author Hatem Ltaief
* @author Jakub Kurzak
* @author Mathieu Faverge
* @author Emmanuel Agullo
* @author Cedric Castagnede
* @date 2010-11-15
* @precisions normal z -> c d s
*
**/
#include <lapacke.h>
#include "morse_starpu.h"
#include "codelet_z.h"
/**
*
* @ingroup CORE_MORSE_Complex64_t
*
* CORE_zgetrf_incpiv computes an LU factorization of a general M-by-N tile A
* using partial pivoting with row interchanges.
*
* The factorization has the form
*
* A = P * L * U
*
* where P is a permutation matrix, L is lower triangular with unit
* diagonal elements (lower trapezoidal if m > n), and U is upper
* triangular (upper trapezoidal if m < n).
*
* This is the right-looking Level 2.5 BLAS version of the algorithm.
*
*******************************************************************************
*
* @param[in] M
* The number of rows of the tile A. M >= 0.
*
* @param[in] N
* The number of columns of the tile A. N >= 0.
*
* @param[in] IB
* The inner-blocking size. IB >= 0.
*
* @param[in,out] A
* On entry, the M-by-N tile to be factored.
* On exit, the factors L and U from the factorization
* A = P*L*U; the unit diagonal elements of L are not stored.
*
* @param[in] LDA
* The leading dimension of the array A. LDA >= max(1,M).
*
* @param[out] IPIV
* The pivot indices; for 1 <= i <= min(M,N), row i of the
* tile was interchanged with row IPIV(i).
*
* @param[out] INFO
* See returned value.
*
*******************************************************************************
*
* @return
* \retval MORSE_SUCCESS successful exit
* \retval <0 if INFO = -k, the k-th argument had an illegal value
* \retval >0 if INFO = k, U(k,k) is exactly zero. The factorization
* has been completed, but the factor U is exactly
* singular, and division by zero will occur if it is used
* to solve a system of equations.
*
******************************************************************************/
void MORSE_TASK_zgetrf_incpiv(MORSE_option_t *options,
int m, int n, int ib, int nb,
MORSE_desc_t *A, int Am, int An, int lda,
MORSE_desc_t *L, int Lm, int Ln, int ldl,
int *IPIV,
MORSE_bool check_info, int iinfo)
{
(void)nb;
struct starpu_codelet *codelet = &cl_zgetrf_incpiv;
void (*callback)(void*) = options->profiling ? cl_zgetrf_incpiv_callback : NULL;
MORSE_starpu_ws_t *h_work = (MORSE_starpu_ws_t*)(options->ws_host);
if ( morse_desc_islocal( A, Am, An ) ||
morse_desc_islocal( L, Lm, Ln ) )
{
starpu_insert_task(
codelet,
STARPU_VALUE, &m, sizeof(int),
STARPU_VALUE, &n, sizeof(int),
STARPU_VALUE, &ib, sizeof(int),
STARPU_RW, RTBLKADDR(A, MORSE_Complex64_t, Am, An),
STARPU_VALUE, &lda, sizeof(int),
STARPU_W, RTBLKADDR(L, MORSE_Complex64_t, Lm, Ln),
STARPU_VALUE, &ldl, sizeof(int),
STARPU_VALUE, &IPIV, sizeof(int*),
STARPU_VALUE, &check_info, sizeof(MORSE_bool),
STARPU_VALUE, &iinfo, sizeof(int),
STARPU_SCRATCH, options->ws_worker,
STARPU_VALUE, &h_work, sizeof(MORSE_starpu_ws_t *),
STARPU_PRIORITY, options->priority,
STARPU_CALLBACK, callback,
0);
}
}
static void cl_zgetrf_incpiv_cpu_func(void *descr[], void *cl_arg)
{
MORSE_starpu_ws_t *h_work;
int m;
int n;
int ib;
MORSE_Complex64_t *A, *L;
int lda, ldl;
int *IPIV;
MORSE_bool check_info;
int iinfo;
int info = 0;
A = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[0]);
L = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[1]);
starpu_codelet_unpack_args(cl_arg, &m, &n, &ib, &lda, &ldl, &IPIV, &check_info, &iinfo, &h_work);
CORE_zgetrf_incpiv(m, n, ib, A, lda, IPIV, &info);
#if defined(CHAMELEON_USE_MAGMA)
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
* L stores:
* L1 L2 L3 ...
* L1^-1 L2^-1 L3^-1 ...
*/
/* Compute L-1 in lower rectangle of L */
if ( ldl >= 2*ib )
{
int i, sb;
L += ib;
for (i=0; i<n; i+=ib) {
sb = min( ib, n-i );
CORE_zlacpy(MorseUpperLower, sb, sb, A+(i*lda+i), lda, L+(i*ldl), ldl );
CORE_ztrtri( MorseLower, MorseUnit, sb, L+(i*ldl), ldl, &info );
if (info != 0 ) {
fprintf(stderr, "ERROR, trtri returned with info = %d\n", info);
}
}
}
#endif
}
/*
* Codelet GPU
*/
#if defined(CHAMELEON_USE_MAGMA) && defined(HAVE_MAGMA_GETRF_INCPIV_GPU)
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
static void cl_zgetrf_incpiv_cuda_func(void *descr[], void *cl_arg)
{
int m;
int n;
int ib;
cuDoubleComplex *hA, *dA;
cuDoubleComplex *hL, *dL;
cuDoubleComplex *dwork;
MORSE_starpu_ws_t *h_work;
int lda, ldl;
int *IPIV;
MORSE_bool check_info;
int iinfo;
int info;
starpu_codelet_unpack_args(cl_arg, &m, &n, &ib, &lda, &ldl, &IPIV, &check_info, &iinfo, &h_work);
dA = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[0]);
dL = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[1]);
/*
* hwork => at least (IB+NB)*IB contains all hA and hL
* dwork => at least IB*NB
*/
hA = (cuDoubleComplex*)RUNTIME_starpu_ws_getlocal(h_work);
dwork = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[2]);
hL = hA + lda*ib;
/* Initialize L to 0 */
memset(hL, 0, ib*ib*sizeof(cuDoubleComplex));
if ( ldl >= 2*ib ) {
/* Let's compute the inverses in the bottom part of L */
dL += ib;
} else {
/* We prefer to stick with TRSM */
dL = NULL;
hL = NULL;
}
magma_zgetrf_incpiv_gpu( MagmaColMajor, m, n, ib,
hA, lda, dA, lda,
hL, ib, dL, ldl,
IPIV,
dwork, lda,
&info );
cudaThreadSynchronize();
}
#endif
/*
* Codelet definition
*/
#if (defined(CHAMELEON_USE_MAGMA) && defined(HAVE_MAGMA_GETRF_INCPIV_GPU)) || defined(CHAMELEON_SIMULATION)
CODELETS(zgetrf_incpiv, 3, cl_zgetrf_incpiv_cpu_func, cl_zgetrf_incpiv_cuda_func, 0)
#else
CODELETS_CPU(zgetrf_incpiv, 3, cl_zgetrf_incpiv_cpu_func)
#endif