Mentions légales du service
Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
faust
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
faust group
faust
Commits
05feacb6
Commit
05feacb6
authored
2 years ago
by
hhakim
Browse files
Options
Downloads
Patches
Plain Diff
Integrate the GPU batched SVD in butterfly balanced factorization C++ impl.
parent
5ded8fa1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/algorithm/factorization/faust_butterfly.hpp
+90
-18
90 additions, 18 deletions
src/algorithm/factorization/faust_butterfly.hpp
with
90 additions
and
18 deletions
src/algorithm/factorization/faust_butterfly.hpp
+
90
−
18
View file @
05feacb6
...
...
@@ -188,45 +188,116 @@ namespace Faust
X
.
setZeros
();
Y
.
setZeros
();
std
::
vector
<
MatDense
<
FPP
,
Cpu
>>
U
(
r
),
V
(
r
)
;
bool
svd_on_gpu
=
false
;
std
::
vector
<
std
::
vector
<
int
>>
rows
(
r
),
cols
(
r
);
#pragma omp parallel for schedule(dynamic) private(subA)
#pragma omp parallel for schedule(dynamic)
for
(
int
t
=
0
;
t
<
r
;
t
++
)
{
rows
[
t
]
=
s1
.
col_nonzero_inds
(
t
);
cols
[
t
]
=
s2
.
row_nonzero_inds
(
t
);
if
(
dsA
)
dsA
->
submatrix
(
rows
[
t
],
cols
[
t
],
subA
);
else
spA
->
submatrix
(
rows
[
t
],
cols
[
t
],
subA
);
//#define BUTTERFLY_APPROX_RANK1
}
if
(
svd_on_gpu
&&
rows
[
0
].
size
()
<=
32
&&
rows
[
1
].
size
()
<=
32
)
// GPU batched svd is limited to 32 nrows/ncols max
{
#ifdef USE_GPU_MOD
compute_XY_on_gpu
(
A
,
s1
,
s2
,
X
,
Y
,
rows
,
cols
);
#else
throw
std
::
runtime_error
(
"GPU SVD is not enabled in this version of FAµST."
);
#endif
}
else
{
std
::
vector
<
MatDense
<
FPP
,
Cpu
>>
U
(
r
),
V
(
r
);
#pragma omp parallel for schedule(dynamic) private(subA)
for
(
int
t
=
0
;
t
<
r
;
t
++
)
{
if
(
dsA
)
dsA
->
submatrix
(
rows
[
t
],
cols
[
t
],
subA
);
else
spA
->
submatrix
(
rows
[
t
],
cols
[
t
],
subA
);
//#define BUTTERFLY_APPROX_RANK1
#ifdef BUTTERFLY_APPROX_RANK1
subA
.
approx_rank1
(
U
[
t
],
V
[
t
]);
subA
.
approx_rank1
(
U
[
t
],
V
[
t
]);
#else
if
(
A
.
getNbRow
()
>=
(
1
<<
14
)
&&
(
std
::
is_same
<
FPP
,
double
>::
value
||
std
::
is_same
<
FPP
,
std
::
complex
<
double
>>::
value
))
if
(
A
.
getNbRow
()
>=
(
1
<<
14
)
&&
(
std
::
is_same
<
FPP
,
double
>::
value
||
std
::
is_same
<
FPP
,
std
::
complex
<
double
>>::
value
))
{
// use jacobi svd as a workaround to this bug https://gitlab.com/libeigen/eigen/-/issues/1723
// TODO: remove when it'll be fixed
Eigen
::
JacobiSVD
<
Eigen
::
Matrix
<
FPP
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
svd
;
subA
.
initJacobiSVD
(
svd
);
subA
.
best_low_rank
(
1
,
U
[
t
],
V
[
t
],
svd
);
}
else
subA
.
best_low_rank
(
1
,
U
[
t
],
V
[
t
]);
#endif
}
std
::
vector
<
Eigen
::
Triplet
<
FPP
>>
XtripletList
;
std
::
vector
<
Eigen
::
Triplet
<
FPP
>>
YtripletList
;
for
(
int
t
=
0
;
t
<
r
;
t
++
)
{
// use jacobi svd as a workaround to this bug https://gitlab.com/libeigen/eigen/-/issues/1723
// TODO: remove when it'll be fixed
Eigen
::
JacobiSVD
<
Eigen
::
Matrix
<
FPP
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
svd
;
subA
.
initJacobiSVD
(
svd
);
subA
.
best_low_rank
(
1
,
U
[
t
],
V
[
t
],
svd
);
for
(
int
i
=
0
;
i
<
rows
[
t
].
size
();
i
++
)
XtripletList
.
push_back
(
Eigen
::
Triplet
<
FPP
>
(
rows
[
t
][
i
],
t
,
U
[
t
].
getData
()[
i
]));
for
(
int
i
=
0
;
i
<
cols
[
t
].
size
();
i
++
)
YtripletList
.
push_back
(
Eigen
::
Triplet
<
FPP
>
(
t
,
cols
[
t
][
i
],
V
[
t
](
0
,
i
)));
}
X
=
MatSparse
<
FPP
,
Cpu
>
(
XtripletList
,
s1
.
getNbRow
(),
s1
.
getNbCol
());
Y
=
MatSparse
<
FPP
,
Cpu
>
(
YtripletList
,
s2
.
getNbRow
(),
s2
.
getNbCol
());
}
}
#ifdef USE_GPU_MOD
template
<
typename
FPP
>
void
compute_XY_on_gpu
(
const
Faust
::
MatGeneric
<
FPP
,
Cpu
>&
A
,
const
Faust
::
MatSparse
<
FPP
,
Cpu
>&
s1
,
const
Faust
::
MatSparse
<
FPP
,
Cpu
>&
s2
,
Faust
::
MatSparse
<
FPP
,
Cpu
>&
X
,
Faust
::
MatSparse
<
FPP
,
Cpu
>&
Y
,
std
::
vector
<
std
::
vector
<
int
>>
&
rows
,
std
::
vector
<
std
::
vector
<
int
>>
&
cols
)
{
const
Faust
::
MatDense
<
FPP
,
Cpu
>*
dsA
=
dynamic_cast
<
const
Faust
::
MatDense
<
FPP
,
Cpu
>*>
(
&
A
);
const
Faust
::
MatSparse
<
FPP
,
Cpu
>*
spA
;
if
(
dsA
==
nullptr
)
{
spA
=
dynamic_cast
<
const
Faust
::
MatSparse
<
FPP
,
Cpu
>*>
(
&
A
);
if
(
spA
==
nullptr
)
throw
std
::
runtime_error
(
"lifting_two_layers_factorization A must be MatDense or MatSparse."
);
}
int
r
=
s1
.
getNbCol
();
int
m
=
rows
[
0
].
size
(),
n
=
cols
[
0
].
size
();
MatDense
<
FPP
,
Cpu
>
Us
(
m
,
r
),
Vs
(
n
,
r
);
MatDense
<
FPP
,
Cpu
>
Ss
(
r
);
MatDense
<
FPP
,
Cpu
>
subAs
(
m
,
r
*
n
);
for
(
int
i
=
0
;
i
<
r
;
i
++
)
if
(
dsA
)
dsA
->
submatrix
(
rows
[
i
],
cols
[
i
],
subAs
.
getData
()
+
i
*
m
*
n
);
else
subA
.
best_low_rank
(
1
,
U
[
t
],
V
[
t
]);
#endif
spA
->
submatrix
(
rows
[
i
],
cols
[
i
],
subAs
.
getData
()
+
i
*
m
*
n
);
batched_svd
(
subAs
,
r
/* batch_sz */
,
Us
,
Vs
,
Ss
,
/* rank */
1
);
using
Map
=
Eigen
::
Map
<
Eigen
::
Matrix
<
FPP
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
;
for
(
int
i
=
0
;
i
<
r
;
i
++
)
{
Map
U
(
Us
.
getData
()
+
i
*
m
,
m
,
1
);
U
*=
Ss
(
i
);
Vs
.
adjoint
();
}
std
::
vector
<
Eigen
::
Triplet
<
FPP
>>
XtripletList
;
std
::
vector
<
Eigen
::
Triplet
<
FPP
>>
YtripletList
;
for
(
int
t
=
0
;
t
<
r
;
t
++
)
{
Map
U_
(
Us
.
getData
()
+
t
*
m
,
m
,
1
);
Map
V_
(
Vs
.
getData
()
+
t
*
n
,
1
,
n
);
for
(
int
i
=
0
;
i
<
rows
[
t
].
size
();
i
++
)
XtripletList
.
push_back
(
Eigen
::
Triplet
<
FPP
>
(
rows
[
t
][
i
],
t
,
U
[
t
].
getData
()[
i
]
));
XtripletList
.
push_back
(
Eigen
::
Triplet
<
FPP
>
(
rows
[
t
][
i
],
t
,
U
_
(
i
,
0
)
));
for
(
int
i
=
0
;
i
<
cols
[
t
].
size
();
i
++
)
YtripletList
.
push_back
(
Eigen
::
Triplet
<
FPP
>
(
t
,
cols
[
t
][
i
],
V
[
t
]
(
0
,
i
)));
YtripletList
.
push_back
(
Eigen
::
Triplet
<
FPP
>
(
t
,
cols
[
t
][
i
],
V
_
(
0
,
i
)));
}
X
=
MatSparse
<
FPP
,
Cpu
>
(
XtripletList
,
s1
.
getNbRow
(),
s1
.
getNbCol
());
Y
=
MatSparse
<
FPP
,
Cpu
>
(
YtripletList
,
s2
.
getNbRow
(),
s2
.
getNbCol
());
}
#endif
template
<
typename
FPP
>
void
solveDTO
(
const
Faust
::
MatDense
<
FPP
,
Cpu
>&
A
,
const
Faust
::
MatDense
<
FPP
,
Cpu
>&
s1
,
const
Faust
::
MatDense
<
FPP
,
Cpu
>&
s2
,
Faust
::
MatDense
<
FPP
,
Cpu
>&
X
,
Faust
::
MatDense
<
FPP
,
Cpu
>&
Y
)
...
...
@@ -311,6 +382,7 @@ namespace Faust
Y
.
set_row_coeffs
(
row_id
,
CP
,
besty
,
i
);
}
}
}
template
<
typename
FPP
>
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment