Newer
Older
#coding=utf8
########################################################################
### ###
### Created by Martin Genet, 2016 ###
### ###
### École Polytechnique, Palaiseau, France ###
### ###
########################################################################
import dolfin
import glob
import numpy
import os
import myFEniCSPythonLibrary as myFEniCS
import myVTKPythonLibrary as myVTK
########################################################################
def fedic(
working_folder,
working_basename,
images_folder,
images_basename,
mesh_folder,
mesh_basename,
images_dimension=3, # 2 or 3
images_zfill=2,
images_k_ref=0,
tangent_type="I1", # I0, I1old or I1
relax_type="const", # const, aitken or manual
relax_init=1.0,
n_iter_max=100,
print_iterations=0,
continue_after_fail=0,
verbose=1):
if not os.path.exists(working_folder):
os.mkdir(working_folder)
print "Loading mesh…"
mesh_filename = mesh_folder+"/"+mesh_basename+".xml"
assert os.path.exists(mesh_filename)
mesh = dolfin.Mesh(mesh_filename)
dX = dolfin.dx(mesh)
mesh_V = dolfin.assemble(dolfin.Constant(1)*dX)
print "Computing quadrature degree for images…"
ref_image_filename = images_folder+"/"+images_basename+"_"+str(images_k_ref).zfill(images_zfill)+".vti"
images_quadrature = myFEniCS.compute_quadrature_degree(
image_filename=ref_image_filename,
#images_quadrature = 1
print "images_quadrature = " + str(images_quadrature)
cell=mesh.ufl_cell(),
quad_scheme="default")
ve = dolfin.VectorElement(
family="Quadrature",
cell=mesh.ufl_cell(),
quad_scheme="default")
print "Loading reference image…"
if (images_dimension == 2):
I0 = myFEniCS.ExprIm2(
DI0 = myFEniCS.ExprGradIm2(
DI0 = myFEniCS.ExprGradIm3(
else:
assert (0), "images_dimension must be 2 or 3. Aborting."
I0_norm = (dolfin.assemble(I0**2 * dX, form_compiler_parameters={'quadrature_degree':images_quadrature})/mesh_V)**(1./2)
assert (I0_norm > 0.), "I0_norm = " + str(I0_norm)
print "I0_norm = " + str(I0_norm)
print "Defining functions…"
penalty = dolfin.Constant(penalty)
U = dolfin.Function(
U_old = dolfin.Function(
vfs,
name="displacement correction")
ddU = dolfin.TrialFunction(vfs)
V = dolfin.TestFunction(vfs)
pvd_basename = working_folder+"/"+working_basename+"_"
file_pvd = dolfin.File(pvd_basename+".pvd")
for vtu_filename in glob.glob(pvd_basename+"*.vtu"):
os.remove(vtu_filename)
file_pvd << (U, float(images_k_ref))
print "Defining variational forms…"
if (images_dimension == 2):
I1 = myFEniCS.ExprDefIm2(
U=U,
DI1 = myFEniCS.ExprGradDefIm2(
elif (images_dimension == 3):
I1 = myFEniCS.ExprDefIm3(
U=U,
DI1 = myFEniCS.ExprGradDefIm3(
else:
assert (0), "images_dimension must be 2 or 3. Aborting."
if (tangent_type == "I0"):
a = penalty * dolfin.inner(dolfin.dot(DI0, ddU),
dolfin.dot(DI0, V))*dX
elif (tangent_type == "I1") or (tangent_type == "I1old"):
a = penalty * dolfin.inner(dolfin.dot(DI1, ddU),
dolfin.dot(DI1, V))*dX
a += (1.-penalty) * dolfin.inner(dolfin.grad(ddU),
dolfin.grad( V))*dX
b = penalty * dolfin.inner(I0-I1,
dolfin.dot(DI1, V))*dX\
- (1.-penalty) * dolfin.inner(dolfin.grad(U),
dolfin.grad(V))*dX
B0 = dolfin.assemble(b0, form_compiler_parameters={'quadrature_degree':images_quadrature})
B0_norm = numpy.linalg.norm(B0)
assert (B0_norm > 0.), "B0_norm = " + str(B0_norm)
print "B0_norm = " + str(B0_norm)
# linear system
A = None
if (tangent_type == "I0"):
A = dolfin.assemble(a, tensor=A, form_compiler_parameters={'quadrature_degree':images_quadrature})
print "Checking number of frames…"
n_frames = len(glob.glob(images_folder+"/"+images_basename+"_*.vti"))
n_frames = 2
assert (n_frames > 1), "n_frames = " + str(n_frames) + " <= 1. Aborting."
assert (abs(images_k_ref) < n_frames), "abs(images_k_ref) = " + str(images_k_ref) + " >= n_frames. Aborting."
images_k_ref = images_k_ref%n_frames
print "images_k_ref = " + str(images_k_ref)
for forward_or_backward in ["forward", "backward"]: # not sure if this still works…
print "forward_or_backward = " + forward_or_backward
if (forward_or_backward == "forward"):
print "k_frames = " + str(k_frames)
if (forward_or_backward == "backward"):
U.vector()[:] = 0.
I1.init_image( filename=ref_image_filename)
DI1.init_image(filename=ref_image_filename)
for k_frame in k_frames:
print "k_frame = " + str(k_frame)
frame_basename = working_folder+"/"+working_basename+"-frame="+str(k_frame).zfill(images_zfill)
if (os.path.exists(frame_basename+".pdf")):
os.remove(frame_basename+".pdf")
file_dat_frame = open(frame_basename+".dat", "w")
file_dat_frame.write("#k_iter B_norm err_res relax dU_norm U_norm err_disp I1I0_norm err_im err_im_rel\n")
file_pvd_frame = dolfin.File(frame_basename+"_.pvd")
for vtu_filename in glob.glob(frame_basename+"_*.vtu"):
os.remove(vtu_filename)
file_pvd_frame << (U, 0.)
# linear system: matrix
if (tangent_type == "I1old"):
A = dolfin.assemble(a, tensor=A, form_compiler_parameters={'quadrature_degree':images_quadrature})
#print "A = " + str(A.array())
#A_norm = numpy.linalg.norm(A.array())
#print "A_norm = " + str(A_norm)
image_filename = images_folder+"/"+images_basename+"_"+str(k_frame).zfill(images_zfill)+".vti"
I1.init_image( filename=image_filename)
DI1.init_image(filename=image_filename)
if (print_iterations):
U_old.vector()[:] = U.vector()[:]
U.vector()[:] = 0.
I1I0_norm = (dolfin.assemble((I1-I0)**2 * dX, form_compiler_parameters={'quadrature_degree':images_quadrature})/mesh_V)**(1./2)
err_im = I1I0_norm/I0_norm
file_dat_frame.write(" ".join([str(val) for val in [-2, None, None, None, None, None, None, I1I0_norm, err_im, None]])+"\n")
U.vector()[:] = U_old.vector()[:]
I1I0_norm = (dolfin.assemble((I1-I0)**2 * dX, form_compiler_parameters={'quadrature_degree':images_quadrature})/mesh_V)**(1./2)
err_im = I1I0_norm/I0_norm
file_dat_frame.write(" ".join([str(val) for val in [-1, None, None, None, None, None, None, I1I0_norm, err_im, None]])+"\n")
while (True):
print "k_iter = " + str(k_iter)
n_iter_tot += 1
if (tangent_type == "I1"):
A = dolfin.assemble(a, tensor=A, form_compiler_parameters={'quadrature_degree':images_quadrature})
#print "A = " + str(A.array())
#A_norm = numpy.linalg.norm(A.array())
#print "A_norm = " + str(A_norm)
if (relax_type == "aitken"):
if (k_iter == 1):
B_old = B.copy()
elif (k_iter > 1):
B_old[:] = B[:]
#print "B_old = " + str(B_old[0])
B = dolfin.assemble(b, tensor=B, form_compiler_parameters={'quadrature_degree':images_quadrature})
B_norm = numpy.linalg.norm(B.array())
#print "B_norm = " + str(B_norm)
err_res = B_norm/B0_norm
print "err_res = " + str(err_res)
dolfin.solve(A, dU.vector(), B)
#print "dU = " + str(dU.vector().array())
# relaxation
if (relax_type == "constant"):
if (k_iter == 0):
relax = relax_init
elif (relax_type == "aitken"):
if (k_iter == 0):
relax = relax_init
else:
if (k_iter == 1):
dB = B - B_old
elif (k_iter > 1):
dB[:] = B[:] - B_old[:]
relax *= (-1.) * B_old.inner(dB) / dB.inner(dB)
for relax_k in xrange(relax_n_iter):
#print "relax_k = " + str(relax_k)
relax = float(relax_k+1)/relax_n_iter
U.vector()[:] = U_old.vector()[:] + relax * dU.vector()[:]
B = dolfin.assemble(b, tensor=B, form_compiler_parameters={'quadrature_degree':images_quadrature})
B_relax[relax_k] = numpy.linalg.norm(B)
#print "B_relax = " + str(B_relax[relax_k])
iter_basename = frame_basename+"-iter="+str(k_iter).zfill(3)
open(iter_basename+".dat", "w").write("\n".join([" ".join([str(val) for val in [float(relax_k+1)/relax_n_iter, B_relax[relax_k]]]) for relax_k in xrange(relax_n_iter)]))
os.system("gnuplot -e \"set terminal pdf; set output '"+iter_basename+".pdf'; plot '"+iter_basename+".dat' u 1:2 w l notitle\"")
relax_k = numpy.argmin(B_relax)
relax = float(relax_k+1)/relax_n_iter
else:
assert (0), "relax_type must be \"constant\", \"aitken\" or \"manual\". Aborting."
U.vector()[:] = U_old.vector()[:] + relax * dU.vector()[:]
if (print_iterations):
#print "U = " + str(U.vector().array())
U_norm = numpy.linalg.norm(U.vector().array())
assert (U_norm > 0.), "U_norm = " + str(U_norm)
I1I0_norm = (dolfin.assemble((I1-I0)**2 * dX, form_compiler_parameters={'quadrature_degree':images_quadrature})/mesh_V)**(1./2)
err_im = I1I0_norm/I0_norm
print "err_im = " + str(err_im)
if (k_iter == 0):
err_im_rel = 1.
else:
err_im_rel = abs(I1I0_norm-I1I0_norm_old)/I1I0_norm_old
print "err_im_rel = " + str(err_im_rel)
file_dat_frame.write(" ".join([str(val) for val in [k_iter, B_norm, err_res, relax, dU_norm, U_norm, err_disp, I1I0_norm, err_im, err_im_rel]])+"\n")
if (tol_disp is not None) and (tol_res is not None):
if ((err_disp < tol_disp) or ((dU_norm < tol_disp) and (U_norm < tol_disp))) and (err_res < tol_res):
success = True
elif (tol_disp is not None):
if (err_disp < tol_disp) or ((dU_norm < tol_disp) and (U_norm < tol_disp)):
success = True
elif (tol_res is not None):
if (err_res < tol_res):
success = True
if (success):
if (k_iter == n_iter_max-1):
global_success = False
print "Warning! Nonlinear solver failed to converge… (k_frame = "+str(k_frame)+")"
break
# increment counter
k_iter += 1
if (print_iterations):
os.remove(frame_basename+"_.pvd")
file_dat_frame.close()
os.system("gnuplot -e \"set terminal pdf; set output '"+frame_basename+".pdf'; set key box textcolor variable; set grid; set logscale y; set yrange [1e-4:1e1]; plot '"+frame_basename+".dat' u 1:3 pt 1 lw 3 title 'err_res', '' u 1:4 pt 1 lw 3 title 'relax', '' u 1:7 pt 1 lw 3 title 'err_disp', '' using 1:9 pt 1 lw 3 title 'err_im', '' using 1:10 pt 1 lw 3 title 'err_im_rel', "+str(tol_res)+" lt -1 notitle\"")
if not (success) and not (continue_after_fail):
break
print "Printing solution…"
if not (success) and not (continue_after_fail):
break
print "n_iter_tot = " + str(n_iter_tot)