Newer
Older
#coding=utf8
########################################################################
### ###
### Created by Martin Genet, 2016 ###
### ###
### École Polytechnique, Palaiseau, France ###
### ###
########################################################################
import dolfin
import glob
import numpy
import os
import myFEniCSPythonLibrary as myFEniCS
import myVTKPythonLibrary as myVTK
########################################################################
def fedic(
working_folder,
working_basename,
images_folder,
images_basename,
mesh_folder,
mesh_basename,
images_dimension=3,
k_ref=0,
penalty=0.9,
use_I0_tangent=0,
relax_type="const",
relax_init=0.9,
tol_disp=1e-3,
n_iter_max=100,
print_iterations=0,
continue_after_fail=0,
verbose=1):
if not os.path.exists(working_folder):
os.mkdir(working_folder)
print "Loading mesh…"
mesh = dolfin.Mesh(mesh_folder+"/"+mesh_basename+".xml")
fs = dolfin.VectorFunctionSpace(
mesh=mesh,
family="Lagrange",
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
dX = dolfin.dx(mesh)
print "Computing quadrature degree…"
degree = myFEniCS.compute_quadrature_degree(
image_filename=images_folder+"/"+images_basename+"_"+str(k_ref).zfill(2)+".vti",
dX=dX,
image_dimension=images_dimension)
print "degree = " + str(degree)
fe = dolfin.FiniteElement(
family="Quadrature",
degree=degree)
print "Loading reference image…"
if (images_dimension == 2):
I0 = myFEniCS.ExprIm2(
filename=images_folder+"/"+images_basename+"_"+str(k_ref).zfill(2)+".vti",
element=fe)
if (use_I0_tangent):
DXI0 = myFEniCS.ExprGradXIm2(
filename=images_folder+"/"+images_basename+"_"+str(k_ref).zfill(2)+".vti",
element=fe)
DYI0 = myFEniCS.ExprGradYIm2(
filename=images_folder+"/"+images_basename+"_"+str(k_ref).zfill(2)+".vti",
element=fe)
elif (images_dimension == 3):
I0 = myFEniCS.ExprIm3(
filename=images_folder+"/"+images_basename+"_"+str(k_ref).zfill(2)+".vti",
element=fe)
if (use_I0_tangent):
DXI0 = myFEniCS.ExprGradXIm3(
filename=images_folder+"/"+images_basename+"_"+str(k_ref).zfill(2)+".vti",
element=fe)
DYI0 = myFEniCS.ExprGradYIm3(
filename=images_folder+"/"+images_basename+"_"+str(k_ref).zfill(2)+".vti",
element=fe)
DZI0 = myFEniCS.ExprGradZIm3(
filename=images_folder+"/"+images_basename+"_"+str(k_ref).zfill(2)+".vti",
element=fe)
else:
assert (0), "images_dimension must be 2 or 3. Aborting."
I0_norm = dolfin.assemble(I0**2 * dX)**(1./2)
print "Defining functions…"
penalty = dolfin.Constant(penalty)
U = dolfin.Function(
fs,
name="displacement")
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
dU = dolfin.Function(
fs,
name="ddisplacement")
ddU = dolfin.TrialFunction(fs)
V = dolfin.TestFunction(fs)
print "Printing initial solution…"
file_pvd = dolfin.File(working_folder+"/"+working_basename+"_.pvd")
for vtu in glob.glob(working_folder+"/"+working_basename+"_*.vtu"):
os.remove(vtu)
file_pvd << (U, float(k_ref))
print "Defining variational forms…"
if (images_dimension == 2):
I1 = myFEniCS.ExprDefIm2(
U=U,
element=fe)
DXI1 = myFEniCS.ExprGradXDefIm2(
U=U,
element=fe)
DYI1 = myFEniCS.ExprGradYDefIm2(
U=U,
element=fe)
if (use_I0_tangent):
a = penalty * dolfin.inner(dolfin.dot(dolfin.as_vector((DXI0, DYI0)), ddU),
dolfin.dot(dolfin.as_vector((DXI0, DYI0)), V))*dX\
+ (1.-penalty) * dolfin.inner(dolfin.grad(ddU),
dolfin.grad( V))*dX
else:
a = penalty * dolfin.inner(dolfin.dot(dolfin.as_vector((DXI1, DYI1)), ddU),
dolfin.dot(dolfin.as_vector((DXI1, DYI1)), V))*dX\
+ (1.-penalty) * dolfin.inner(dolfin.grad(ddU),
dolfin.grad( V))*dX
b = penalty * dolfin.inner(I0-I1,
dolfin.dot(dolfin.as_vector((DXI1, DYI1)), V))*dX\
- (1.-penalty) * dolfin.inner(dolfin.grad(U),
dolfin.grad(V))*dX
elif (images_dimension == 3):
I1 = myFEniCS.ExprDefIm3(
U=U,
element=fe)
DXI1 = myFEniCS.ExprGradXDefIm3(
U=U,
element=fe)
DYI1 = myFEniCS.ExprGradYDefIm3(
U=U,
element=fe)
DZI1 = myFEniCS.ExprGradZDefIm3(
U=U,
element=fe)
if (use_I0_tangent):
a = penalty * dolfin.inner(dolfin.dot(dolfin.as_vector((DXI0, DYI0, DZI0)), ddU),
dolfin.dot(dolfin.as_vector((DXI0, DYI0, DZI0)), V))*dX\
+ (1.-penalty) * dolfin.inner(dolfin.grad(ddU),
dolfin.grad( V))*dX
else:
a = penalty * dolfin.inner(dolfin.dot(dolfin.as_vector((DXI1, DYI1, DZI1)), ddU),
dolfin.dot(dolfin.as_vector((DXI1, DYI1, DZI1)), V))*dX\
+ (1.-penalty) * dolfin.inner(dolfin.grad(ddU),
dolfin.grad( V))*dX
b = penalty * dolfin.inner(I0-I1,
dolfin.dot(dolfin.as_vector((DXI1, DYI1, DZI1)), V))*dX\
- (1.-penalty) * dolfin.inner(dolfin.grad(U),
dolfin.grad(V))*dX
else:
assert (0), "images_dimension must be 2 or 3. Aborting."
# linear system
if (use_I0_tangent):
A = dolfin.assemble(a)
else:
A = None
B = None
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
print "Checking number of frames…"
n_frames = len(glob.glob(images_folder+"/"+images_basename+"_*.vti"))
print "n_frames = " + str(n_frames)
assert (abs(k_ref) < n_frames)
k_ref = k_ref%n_frames
n_iter_tot = 0
for forward_or_backward in ["forward", "backward"]: # not sure if this still works…
print "forward_or_backward = " + forward_or_backward
if (forward_or_backward == "forward"):
k_next_frames = range(k_ref+1, n_frames, +1)
elif (forward_or_backward == "backward"):
k_next_frames = range(k_ref-1, -1, -1)
print "k_next_frames = " + str(k_next_frames)
for k_next_frame in k_next_frames:
print "k_next_frame = " + str(k_next_frame)
if (print_iterations):
if (os.path.exists(working_folder+"/"+working_basename+"-frame="+str(k_next_frame).zfill(2)+".pdf")):
os.remove(working_folder+"/"+working_basename+"-frame="+str(k_next_frame).zfill(2)+".pdf")
file_dat_iter = open(working_folder+"/"+working_basename+"-frame="+str(k_next_frame).zfill(2)+".dat", "w")
file_pvd_iter = dolfin.File(working_folder+"/"+working_basename+"-frame="+str(k_next_frame).zfill(2)+"_.pvd")
for vtu in glob.glob(working_folder+"/"+working_basename+"-frame="+str(k_next_frame).zfill(2)+"_*.vtu"):
os.remove(vtu)
file_pvd_iter << (U, 0.)
print "Loading image and image gradient…"
if (images_dimension == 2):
I1.init_image( filename=images_folder+"/"+images_basename+"_"+str(k_next_frame).zfill(2)+".vti")
DXI1.init_image(filename=images_folder+"/"+images_basename+"_"+str(k_next_frame).zfill(2)+".vti")
DYI1.init_image(filename=images_folder+"/"+images_basename+"_"+str(k_next_frame).zfill(2)+".vti")
elif (images_dimension == 3):
I1.init_image( filename=images_folder+"/"+images_basename+"_"+str(k_next_frame).zfill(2)+".vti")
DXI1.init_image(filename=images_folder+"/"+images_basename+"_"+str(k_next_frame).zfill(2)+".vti")
DYI1.init_image(filename=images_folder+"/"+images_basename+"_"+str(k_next_frame).zfill(2)+".vti")
DZI1.init_image(filename=images_folder+"/"+images_basename+"_"+str(k_next_frame).zfill(2)+".vti")
else:
assert (0), "images_dimension must be 2 or 3. Aborting."
print "Running registration…"
k_iter = 0
relax = relax_init
while (True):
print "k_iter = " + str(k_iter)
n_iter_tot += 1
if not (use_I0_tangent):
A = dolfin.assemble(a, tensor=A)
#print "A = " + str(A.array())
# linear system: residual
if (k_iter == 1):
B_old = B.copy()
elif (k_iter > 1):
B_old[:] = B[:]
#print "B_old = " + str(B_old[0])
if (k_iter == 0):
B_norm0 = numpy.linalg.norm(B, ord=2)
print "B_norm0 = " + str(B_norm0)
B_norm = numpy.linalg.norm(B, ord=2)
print "B_norm = " + str(B_norm)
print "B_norm/B_norm0 = " + str(B_norm/B_norm0)
#print "B = " + str(B.array())
# linear system: solve
dolfin.solve(A, dU.vector(), B)
#print "dU = " + str(dU.vector().array())
# relaxation
if (relax_type == "aitken") and (k_iter > 0):
if (k_iter == 1):
dB = B - B_old
elif (k_iter > 1):
dB[:] = B[:] - B_old[:]
relax *= (-1.) * B_old.inner(dB) / dB.inner(dB)
print "relax = " + str(relax)
elif (relax_type == "manual"):
B_relax = numpy.empty(relax_n_iter)
for k_relax in xrange(relax_n_iter):
#print "k_relax = " + str(k_relax)
relax = float(k_relax+1)/relax_n_iter
U.vector()[:] = U_old.vector()[:] + relax * dU.vector()[:]
B = dolfin.assemble(b, tensor=B)
B_relax[k_relax] = numpy.linalg.norm(B, ord=2)
#print "B_relax = " + str(B_relax[k_relax])
print "B_relax = " + str(B_relax)
k_relax = numpy.argmin(B_relax)
relax = float(k_relax+1)/relax_n_iter
print "relax = " + str(relax)
U.vector()[:] = U_old.vector()[:] + relax * dU.vector()[:]
#U.vector().axpy(relax, dU.vector())
if (print_iterations):
#print "U = " + str(U.vector().array())
file_pvd_iter << (U, float(k_iter+1))
# displacement error
dU_norm = numpy.linalg.norm(dU.vector().array(), ord=2)
U_norm = numpy.linalg.norm(U.vector().array(), ord=2)
err_disp = dU_norm/U_norm
print "dU_norm = " + str(dU_norm)
print "U_norm = " + str(U_norm)
print "err_disp = " + str(err_disp)
# image error
I1I0_norm = dolfin.assemble((I1-I0)**2 * dX)**(1./2)
err_im = I1I0_norm/I0_norm
print "err_im = " + str(err_im)
if (print_iterations):
file_dat_iter.write(" ".join([str(val) for val in [k_iter, dU_norm, U_norm, err_disp, err_im]])+"\n")
if (err_disp < tol_disp) or ((dU_norm < tol_disp) and (U_norm < tol_disp)):
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
print "Nonlinear solver converged…"
success = True
break
if (k_iter >= n_iter_max-1):
print "Warning! Nonlinear solver failed to converge…"
success = False
break
# increment counter
k_iter += 1
if (print_iterations):
os.remove(working_folder+"/"+working_basename+"-frame="+str(k_next_frame).zfill(2)+"_.pvd")
file_dat_iter.close()
os.system("gnuplot -e \"set terminal pdf; set output '"+working_folder+"/"+working_basename+"-frame="+str(k_next_frame).zfill(2)+".pdf'; set logscale y; plot '"+working_folder+"/"+working_basename+"-frame="+str(k_next_frame).zfill(2)+".dat' using 1:3\"")
if not (success) and not (continue_after_fail):
break
print "Printing solution…"
file_pvd << (U, float(k_next_frame))
if not (success) and not (continue_after_fail):
break
print "n_iter_tot = " + str(n_iter_tot)
os.remove(working_folder+"/"+working_basename+"_.pvd")
return success