Newer
Older
# Copyright CNRS/Inria/UNS
# Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
from typing import Any, Dict, Sequence, Union
import scipy.stats as st_
from logger_36 import LOGGER
import brick.task.ellipsoid_fit as bf_
import brick.task.unit
from brick.type.base import array_t
from brick.type.soma import soma_t
def FindGraphsRootWithEdges(
soma: soma_t, ext_nfo: Dict[str, Union[array_t, Any]]
) -> dict:
"""
Finds the soma roots of the graph extension.
"""
# For a given soma, find the roots of the graphs
root_nodes = {}
# Finds the primary extensions
primary_extension_uids = tuple(extension.uid for extension in soma.extensions)
# print(primary_extension_uids, '\nn = ', len(primary_extension_uids))
# List of the degree 1 nodes of the graph
for node1_id, node2_id, edge_nfo in soma.skl_graph.edges.data("details"):
if (soma.skl_graph.degree[node1_id] == 1) or (
soma.skl_graph.degree[node2_id] == 1
):
sites = ext_nfo["lmp_soma"][edge_nfo.sites]
ext_uid = nmpy.unique(sites)[-1]
# sites > 0 because ext_nfo['lmp'] do not contain the connexions
# Save the root node candidates (one-degree nodes)
if ext_uid in primary_extension_uids:
if soma.skl_graph.degree[node1_id] == 1:
root_node = node1_id
else:
root_node = node2_id
# Get the node coordinates and extend them to the 26 neighboring voxels
root_node_coor = soma.skl_graph.nodes[root_node][
"details"
].position.tolist() # _GetNodesCoordinates((root_node,))[0]
(
root_node_coor[0] + i,
root_node_coor[1] + j,
root_node_coor[2] + k,
)
for i in (-1, 0, 1)
for j in (-1, 0, 1)
for k in (-1, 0, 1)
if i != 0 or j != 0 or k != 0
)
# Find the intersection between the extended root node candidate and the soma contour points
intersections = set(soma.contour_points).intersection(root_sites)
# if the graph root sites are included in the soma extensions sites (non-nul intersection):
if len(intersections) > 0:
# Keep the info of the root node. Key = ext uid, Value = root node
root_nodes[ext_uid] = root_node
## By construction, only one root node possible for an ext
# TODO: find out why there are less root points than extensions !!
return root_nodes
def FindGraphsRootWithNodes(soma: soma_t) -> dict:
"""
Find the roots of the {extension+connexion} graphs to be lined to the soma.
Add a key "root" (bool) in the dict of nodes attributes.
"""
is_end_point = []
node_label = []
coordinates = []
for label, degree in soma.skl_graph.degree:
is_end_point.append(degree == 1)
node_label.append(label)
coordinates.append(
tuple(soma.skl_graph.nodes[label]["details"].position.tolist())
)
# Find the nodes of degree == 1, and the str coordinates of the nodes
# is_end_point = tuple(degree == 1 for _, degree in soma.skl_graph.degree)
# node_label = tuple(xyz for xyz, _ in soma.skl_graph.degree)
root_nodes = {}
# get the coordinates of the nodes (x,y,z)
# coordinates = _GetNodesCoordinates(node_label)
# get a list with elements = (extension_uid, root coordinates), which length is the number of primary extensions
roots = soma.ext_roots
# for each node in the graph, search among the degree 1 nodes the nodes that are roots (linked to soma)
for node in range(len(coordinates)):
# compare the coor with end points
for ext_root in roots:
if ext_root[1] == coordinates[node]:
root_nodes[ext_root[0]] = node_label[node]
if root_nodes.__len__() != roots.__len__():
# raise ValueError("Number of extensions roots not equal to number of graph roots.")
f"Number of extensions roots: {root_nodes.__len__()} "
f"not equal to number of graph roots: {roots.__len__()}."
# def _GetNodesCoordinates(node_coord: Tuple[str, ...]) -> list:
# """
# Input: nodes attributes -> Tuple('x1-y1-z1', 'x2-y2-z2', ...) .
# Output: coordinates -> List[Tuple(x1,y1,z1), Tuple(x2,y2,z2), ...]
# """
# coord = []
# for c in node_coord:
# coord.append(c)
#
# for node in range(len(node_coord)):
# coord_node = coord[node]
# pattern = r"\d+"
# coord_node = re_.findall(pattern, coord_node)
# coor = []
# for i in range(3):
# coor.append(int(coord_node[i]))
# coor = tuple(coor)
# coord[node] = coor
#
# return coord
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
FEATURE_SHEET_COLUMNS = [
"condition",
"duration",
"soma uid",
"coef_V_soma__V_convex_hull",
"coef_axes_ellips_b__a",
"coef_axes_ellips_c__a",
"spherical_angles_eva",
"spherical_angles_evb",
#
"N_nodes",
"N_ext",
"N_primary_ext",
"N_sec_ext",
"min_degree",
"mean_degree",
"median_degree",
"max_degree",
"std_degree",
#
"total_ext_length",
"min_length",
"mean_length",
"median_length",
"max_length",
"std_lengths",
"entropy_lengths",
"hist_lengths",
"min_thickness",
"mean_thickness",
"median_thickness",
"max_thickness",
"std_thickness",
"entropy_thickness",
"min_volume",
"mean_volume",
"median_volume",
"max_volume",
"std_volume",
"entropy_volume",
"min_curvature",
"max_curvature",
"mean_curvature",
"median_curvature",
"std_curvature",
"entropy_curvature",
"hist_curvature",
#
"total_ext_length_P",
"min_length_P",
"mean_length_P",
"median_length_P",
"max_length_P",
"std_lengths_P",
"entropy_lengths_P",
"hist_lengths_P",
"min_thickness_P",
"mean_thickness_P",
"median_thickness_P",
"max_thickness_P",
"std_thickness_P",
"entropy_thickness_P",
"min_volume_P",
"mean_volume_P",
"median_volume_P",
"max_volume_P",
"std_volume_P",
"entropy_volume_P",
"min_curvature_P",
"max_curvature_P",
"mean_curvature_P",
"median_curvature_P",
"std_curvature_P",
"entropy_curvature_P",
"hist_curvature_P",
#
"total_ext_length_S",
"min_length_S",
"mean_length_S",
"median_length_S",
"max_length_S",
"std_lengths_S",
"entropy_lengths_S",
"hist_lengths_S",
"min_thickness_S",
"mean_thickness_S",
"median_thickness_S",
"max_thickness_S",
"std_thickness_S",
"entropy_thickness_S",
"min_volume_S",
"mean_volume_S",
"median_volume_S",
"max_volume_S",
"std_volume_S",
"entropy_volume_S",
"min_curvature_S",
"max_curvature_S",
"mean_curvature_S",
"median_curvature_S",
"std_curvature_S",
"entropy_curvature_S",
"hist_curvature_S",
]
def ExtractFeaturesInDF(
name_file,
Condition,
Duration,
voxel_size_in_micron: array_t,
bins_length: array_t,
bins_curvature: array_t,
scale_map: array_t,
decimals: int = 4,
_=None, # condition
__=None, # duration
Store the condition and duration of the image
if (condition is None) or (duration is None):
Condition = re_.findall(r"[A-Z]{3}", name_file)[0]
Duration = re_.findall(r"\dH", name_file)
Find our whether the duration is in hours or in weeks
if Duration.__len__() == 0:
Duration = re_.findall(r"\dW", name_file)[0]
else:
Duration = Duration[0]
Returns a pandas dataframe, without NaN.
"""
somas_features_dict = {} # Dict{soma 1: [features], soma 2: [features], ...}
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
(
min_degree,
mean_degree,
median_degree,
max_degree,
std_degree,
total_ext_length_S,
min_length_S,
mean_length_S,
median_length_S,
max_length_S,
std_lengths_S,
entropy_lengths_S,
hist_lengths_S,
min_thickness_S,
mean_thickness_S,
median_thickness_S,
max_thickness_S,
std_thickness_S,
entropy_thickness_S,
min_volume_S,
mean_volume_S,
median_volume_S,
max_volume_S,
std_volume_S,
entropy_volume_S,
min_curvature_S,
max_curvature_S,
mean_curvature_S,
median_curvature_S,
std_curvature_S,
entropy_curvature_S,
hist_curvature_S,
) = 32 * (None,)
# Axes of the best fitting ellipsoid: a > b > c
(
_,
_,
soma.axes_ellipsoid,
_,
spherical_coor,
_,
volume_convex_hull,
) = bf_.FindBestFittingEllipsoid3D(soma)
# These ratios give info about the shape of the soma. ex: rather flat, rather patatoide, rather spherical...
(
Coef_axes_ellips_b__a,
Coef_axes_ellips_c__a,
spherical_angles_eva,
spherical_angles_evb,
soma.volume_soma_micron,
Coef_V_soma__V_convex_hull,
) = 6 * (None,)
else:
Coef_axes_ellips_b__a = soma.axes_ellipsoid[0] / soma.axes_ellipsoid[2]
Coef_axes_ellips_c__a = soma.axes_ellipsoid[1] / soma.axes_ellipsoid[2]
# Spherical angles give the orientation of the somas in the 3D volume
spherical_angles_eva = (spherical_coor[0][1], spherical_coor[0][2])
spherical_angles_evb = (spherical_coor[1][1], spherical_coor[1][2])
# Volume of the in micron**3
soma.volume_soma_micron = brick.task.unit.ToMicron(
dimension=(0, 1, 2),
decimals=2,
)
# Calculates volume of soma's convex hull in voxel volume
# Take into account anisotropy of the 3D space ( volume = x * y * z with z > x=y)
volume_convex_hull = (
volume_convex_hull * voxel_size_in_micron[2] / voxel_size_in_micron[0]
# Volume of the soma / Volume of its convex hull gives the info about the convexity of the soma
# If close to 0, the soma has a lot of invaginations, if close to 1, it is smooth and convex
Coef_V_soma__V_convex_hull = len(soma.sites[0]) / round(
volume_convex_hull + 0.5
)
# -- Extension features
# Graph features
# number of nodes except the constructed ones from node soma to the roots
N_nodes = soma.skl_graph.n_nodes - len(soma.graph_roots)
# number of edges except the constructed ones from node soma to the roots
N_ext = soma.skl_graph.n_edges - len(soma.graph_roots)
# number of primary edges = linked to the soma except the constructed ones from node soma to the roots
N_primary_ext = len(soma.graph_roots)
# number of secondary edges = not linked to the soma.
N_sec_ext = N_ext - N_primary_ext
LOGGER.info(
f"Soma {soma.uid}\n"
f"N nodes = {N_nodes}\n"
f"N edges = {N_ext}\n"
f"N primary extensions = {N_primary_ext}\n"
f"N secondary extensions = {N_sec_ext}\n"
)
if N_primary_ext > 0:
ext_lengths = [_elm[-1] for _elm in soma.skl_graph.lengths]
ext_lengths[idx] = brick.task.unit.ToMicron(
length, voxel_size_in_micron, decimals=decimals
total_ext_length = brick.task.unit.ToMicron(
soma.skl_graph.length, voxel_size_in_micron, decimals=decimals
(
min_length,
max_length,
median_length,
mean_length,
std_lengths,
hist_lengths,
entropy_lengths,
) = _Statistics_mMdashe(ext_lengths, bins=bins_length)
# hist_lengths = nmpy.histogram(ext_lengths, bins_length)[0]
min_length = brick.task.unit.ToMicron(
min_length, voxel_size_in_micron, decimals=decimals
mean_length = brick.task.unit.ToMicron(
mean_length, voxel_size_in_micron, decimals=decimals
median_length = brick.task.unit.ToMicron(
median_length, voxel_size_in_micron, decimals=decimals
max_length = brick.task.unit.ToMicron(
max_length, voxel_size_in_micron, decimals=decimals
# std_lengths = nmpy.std(ext_lengths)
# entropy_lengths = st_.entropy(hist_lengths)
for *_, edge in soma.skl_graph.edges.data("details"):
edge.widths = scale_map[edge.sites] * voxel_size_in_micron[1]
ext_thickness = nmpy.array(mean_widths) ** 2
(
min_thickness,
max_thickness,
median_thickness,
mean_thickness,
std_thickness,
_,
entropy_thickness,
) = _Statistics_mMdashe(ext_thickness)
# min_thickness = min(ext_thickness)
# mean_thickness = nmpy.mean(ext_thickness)
# median_thickness = nmpy.median(ext_thickness)
# max_thickness = max(ext_thickness)
# std_thickness = nmpy.std(ext_thickness)
# entropy_thickness = st_.entropy(nmpy.histogram(ext_thickness)[0])
ext_volume = nmpy.array(ext_lengths) * ext_thickness
(
min_volume,
max_volume,
median_volume,
mean_volume,
std_volume,
_,
entropy_volume,
) = _Statistics_mMdashe(ext_volume)
# min_volume = min(ext_volume)
# mean_volume = nmpy.mean(ext_volume)
# median_volume = nmpy.median(ext_volume)
# max_volume = max(ext_volume)
# std_volume = nmpy.std(ext_volume)
# entropy_volume = st_.entropy(nmpy.histogram(ext_volume)[0])
curvatures = soma.skl_graph.curvature_and_torsion()
(
min_curvature,
max_curvature,
median_curvature,
mean_curvature,
std_curvature,
hist_curvature,
entropy_curvature,
) = _Statistics_mMdashe(curvatures, bins=bins_curvature)
# hist_curvature = nmpy.histogram(curvatures, bins_curvature)[0]
# min_curvature = min(curvatures)
# max_curvature = max(curvatures)
# mean_curvature = nmpy.mean(curvatures)
# median_curvature = nmpy.median(curvatures)
# std_curvature = nmpy.std(curvatures)
# entropy_curvature = st_.entropy(hist_curvature)
# PRIMARY extensions
ext_lengths_P = list(soma.skl_graph.primary_edge_lengths(soma))
for idx, length in enumerate(ext_lengths_P):
ext_lengths_P[idx] = brick.task.unit.ToMicron(
length, voxel_size_in_micron, decimals=decimals
(
min_length_P,
max_length_P,
median_length_P,
mean_length_P,
std_lengths_P,
hist_lengths_P,
entropy_lengths_P,
) = _Statistics_mMdashe(ext_lengths_P, bins=bins_length)
# hist_lengths_P = nmpy.histogram(ext_lengths_P, bins_length)[0]
# min_length_P = min(ext_lengths_P)
# mean_length_P = nmpy.mean(ext_lengths_P)
# median_length_P = nmpy.median(ext_lengths_P)
# max_length_P = max(ext_lengths_P)
# std_lengths_P = nmpy.std(ext_lengths_P)
# entropy_lengths_P = st_.entropy(hist_lengths_P)
mean_widths_P = soma.skl_graph.P_edge_reduced_widths(soma)
ext_thickness_P = nmpy.array(mean_widths_P) ** 2
(
min_thickness_P,
max_thickness_P,
median_thickness_P,
mean_thickness_P,
std_thickness_P,
_,
entropy_thickness_P,
) = _Statistics_mMdashe(ext_thickness_P)
# min_thickness_P = min(ext_thickness_P)
# mean_thickness_P = nmpy.mean(ext_thickness_P)
# median_thickness_P = nmpy.median(ext_thickness_P)
# max_thickness_P = max(ext_thickness_P)
# std_thickness_P = nmpy.std(ext_thickness_P)
# entropy_thickness_P = st_.entropy(nmpy.histogram(ext_thickness_P)[0])
ext_volume_P = nmpy.array(ext_lengths_P) * ext_thickness_P
(
min_volume_P,
max_volume_P,
median_volume_P,
mean_volume_P,
std_volume_P,
_,
entropy_volume_P,
) = _Statistics_mMdashe(ext_volume_P)
# min_volume_P = min(ext_volume_P)
# mean_volume_P = nmpy.mean(ext_volume_P)
# median_volume_P = nmpy.median(ext_volume_P)
# max_volume_P = max(ext_volume_P)
# std_volume_P = nmpy.std(ext_volume_P)
# entropy_volume_P = st_.entropy(nmpy.histogram(ext_volume_P)[0])
curvatures_P = soma.skl_graph.P_curvature_and_torsion(soma)
(
min_curvature_P,
max_curvature_P,
median_curvature_P,
mean_curvature_P,
std_curvature_P,
hist_curvature_P,
entropy_curvature_P,
) = _Statistics_mMdashe(curvatures_P, bins=bins_curvature)
# hist_curvature_P = nmpy.histogram(curvatures_P, bins_curvature)[0]
# min_curvature_P = min(curvatures_P)
# max_curvature_P = max(curvatures_P)
# mean_curvature_P = nmpy.mean(curvatures_P)
# median_curvature_P = nmpy.median(curvatures_P)
# std_curvature_P = nmpy.std(curvatures_P)
# entropy_curvature_P = st_.entropy(hist_curvature_P)
# Secondary extensions
if N_sec_ext > 0:
# min, mean, median, max and standard deviation of the degrees of non-leaves nodes
min_degree = soma.skl_graph.min_degree_except_leaves_and_roots
mean_degree = soma.skl_graph.mean_degree_except_leaves_and_roots
median_degree = soma.skl_graph.median_degree_except_leaves_and_roots
max_degree = soma.skl_graph.max_degree_except_leaves_an_roots
std_degree = soma.skl_graph.std_degree_except_leaves_and_roots
# SECONDARY extensions length
ext_lengths_S = list(soma.skl_graph.secondary_edge_lengths(soma))
for idx, length in enumerate(ext_lengths_S):
ext_lengths_S[idx] = brick.task.unit.ToMicron(
length, voxel_size_in_micron, decimals=decimals
(
min_length_S,
max_length_S,
median_length_S,
mean_length_S,
std_lengths_S,
hist_lengths_S,
entropy_lengths_S,
) = _Statistics_mMdashe(ext_lengths_S, bins=bins_length)
# hist_lengths_S = nmpy.histogram(ext_lengths_S, bins_length)[0]
# min_length_S = min(ext_lengths_S)
# mean_length_S = nmpy.mean(ext_lengths_S)
# median_length_S = nmpy.median(ext_lengths_S)
# max_length_S = max(ext_lengths_S)
# std_lengths_S = nmpy.std(ext_lengths_S)
# entropy_lengths_S = st_.entropy(hist_lengths_S)
mean_widths_S = soma.skl_graph.S_edge_reduced_widths(soma)
ext_thickness_S = nmpy.array(mean_widths_S) ** 2
(
min_thickness_S,
max_thickness_S,
median_thickness_S,
mean_thickness_S,
std_thickness_S,
_,
entropy_thickness_S,
) = _Statistics_mMdashe(ext_thickness_S)
# min_thickness_S = min(ext_thickness_S)
# mean_thickness_S = nmpy.mean(ext_thickness_S)
# median_thickness_S = nmpy.median(ext_thickness_S)
# max_thickness_S = max(ext_thickness_S)
# std_thickness_S = nmpy.std(ext_thickness_S)
# entropy_thickness_S = st_.entropy(nmpy.histogram(ext_thickness_S)[0])
ext_volume_S = nmpy.array(ext_lengths_S) * ext_thickness_S
(
min_volume_S,
max_volume_S,
median_volume_S,
mean_volume_S,
std_volume_S,
_,
entropy_volume_S,
) = _Statistics_mMdashe(ext_volume_S)
# min_volume_S = min(ext_volume_S)
# mean_volume_S = nmpy.mean(ext_volume_S)
# median_volume_S = nmpy.median(ext_volume_S)
# max_volume_S = max(ext_volume_S)
# std_volume_S = nmpy.std(ext_volume_S)
# entropy_volume_S = st_.entropy(nmpy.histogram(ext_volume_S)[0])
curvatures_S = soma.skl_graph.S_curvature_and_torsion(soma)
(
min_curvature_S,
max_curvature_S,
median_curvature_S,
mean_curvature_S,
std_curvature_S,
hist_curvature_S,
entropy_curvature_S,
) = _Statistics_mMdashe(curvatures_S, bins=bins_curvature)
# hist_curvature_S = nmpy.histogram(curvatures_S, bins_curvature)[0]
# min_curvature_S = min(curvatures_S)
# max_curvature_S = max(curvatures_S)
# mean_curvature_S = nmpy.mean(curvatures_S)
# median_curvature_S = nmpy.median(curvatures_S)
# std_curvature_S = nmpy.std(curvatures_S)
# entropy_curvature_S = st_.entropy(hist_curvature_S)
# If no secondary extensions, give certain value to parameters
if N_sec_ext == 0:
# min, mean, median, max and standard deviation of the degrees of non-leaves nodes
min_degree = 1
mean_degree = 1
median_degree = 1
max_degree = 1
std_degree = 0
total_ext_length_S = 0
min_length_S = 0
mean_length_S = 0
median_length_S = 0
max_length_S = 0
std_lengths_S = 0
entropy_lengths_S = 0
hist_lengths_S = 0
min_thickness_S = 0
mean_thickness_S = 0
median_thickness_S = 0
max_thickness_S = 0
std_thickness_S = 0
entropy_thickness_S = 0
min_volume_S = 0
mean_volume_S = 0
median_volume_S = 0
max_volume_S = 0
std_volume_S = 0
entropy_volume_S = 0
min_curvature_S = -1
max_curvature_S = -1
mean_curvature_S = -1
median_curvature_S = -1
std_curvature_S = 0
entropy_curvature_S = 0
hist_curvature_S = 0
else:
min_degree = 0
mean_degree = 0
median_degree = 0
max_degree = 0
std_degree = 0
total_ext_length = 0
min_length = 0
mean_length = 0
median_length = 0
max_length = 0
std_lengths = 0
entropy_lengths = 0
hist_lengths = 0
min_thickness = 0
mean_thickness = 0
median_thickness = 0
max_thickness = 0
std_thickness = 0
entropy_thickness = 0
min_volume = 0
mean_volume = 0
median_volume = 0
max_volume = 0
std_volume = 0
entropy_volume = 0
min_curvature = -1
max_curvature = -1
mean_curvature = -1
median_curvature = -1
std_curvature = 0
entropy_curvature = 0
hist_curvature = 0
total_ext_length_P = 0
min_length_P = 0
mean_length_P = 0
median_length_P = 0
max_length_P = 0
std_lengths_P = 0
entropy_lengths_P = 0
hist_lengths_P = 0
min_thickness_P = 0
mean_thickness_P = 0
median_thickness_P = 0
max_thickness_P = 0
std_thickness_P = 0
entropy_thickness_P = 0
min_volume_P = 0
mean_volume_P = 0
median_volume_P = 0
max_volume_P = 0
std_volume_P = 0
entropy_volume_P = 0
min_curvature_P = -1
max_curvature_P = -1
mean_curvature_P = -1
median_curvature_P = -1
std_curvature_P = 0
entropy_curvature_P = 0
hist_curvature_P = 0
total_ext_length_S = 0
min_length_S = 0
mean_length_S = 0
median_length_S = 0
max_length_S = 0
std_lengths_S = 0
entropy_lengths_S = 0
hist_lengths_S = 0
min_thickness_S = 0
mean_thickness_S = 0
median_thickness_S = 0
max_thickness_S = 0
std_thickness_S = 0
entropy_thickness_S = 0
min_volume_S = 0
mean_volume_S = 0
median_volume_S = 0
max_volume_S = 0
std_volume_S = 0
entropy_volume_S = 0
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
min_curvature_S = -1
max_curvature_S = -1
mean_curvature_S = -1
median_curvature_S = -1
std_curvature_S = 0
entropy_curvature_S = 0
hist_curvature_S = 0
# Create a dictionary with all the features for every somas
somas_features_dict[name_file + f" soma {soma.uid}"] = [
Condition,
Duration,
soma.uid,
Coef_V_soma__V_convex_hull,
Coef_axes_ellips_b__a,
Coef_axes_ellips_c__a,
spherical_angles_eva,
spherical_angles_evb,
N_nodes,
N_ext,
N_primary_ext,
N_sec_ext,
min_degree,
mean_degree,
median_degree,
max_degree,
std_degree,
#
total_ext_length,
min_length,
mean_length,
median_length,
max_length,
std_lengths,
entropy_lengths,
hist_lengths,
min_thickness,
mean_thickness,
median_thickness,
max_thickness,
std_thickness,
entropy_thickness,
min_volume,
mean_volume,
median_volume,
max_volume,
std_volume,
entropy_volume,
min_curvature,
max_curvature,
mean_curvature,
median_curvature,
std_curvature,
entropy_curvature,
hist_curvature,
#
total_ext_length_P,
min_length_P,
mean_length_P,
median_length_P,
max_length_P,
std_lengths_P,
entropy_lengths_P,
hist_lengths_P,
min_thickness_P,
mean_thickness_P,
median_thickness_P,
max_thickness_P,
std_thickness_P,
entropy_thickness_P,
min_volume_P,
mean_volume_P,
median_volume_P,
max_volume_P,
std_volume_P,
entropy_volume_P,
min_curvature_P,
max_curvature_P,
mean_curvature_P,
median_curvature_P,
std_curvature_P,
entropy_curvature_P,
hist_curvature_P,
#
total_ext_length_S,
min_length_S,
mean_length_S,
median_length_S,
max_length_S,
std_lengths_S,
entropy_lengths_S,
hist_lengths_S,
min_thickness_S,
mean_thickness_S,
median_thickness_S,
max_thickness_S,
std_thickness_S,
entropy_thickness_S,
min_volume_S,
mean_volume_S,
median_volume_S,
max_volume_S,
std_volume_S,
entropy_volume_S,
min_curvature_S,
max_curvature_S,
mean_curvature_S,
median_curvature_S,
std_curvature_S,
entropy_curvature_S,
hist_curvature_S,
]
features_df = pd_.DataFrame.from_dict(
somas_features_dict, orient="index", columns=FEATURE_SHEET_COLUMNS
_Median = lambda _msr: nmpy.median(_msr).item()
_Mean = lambda _msr: nmpy.mean(_msr).item()
_Std = lambda _msr: nmpy.std(_msr).item()
def _Statistics_mMdashe(measures: Sequence, /, *, bins = None) -> tuple:
""""""
if bins is None:
bins = {}
else:
bins = {"bins": bins}
histogram = nmpy.histogram(measures, **bins)[0]
histogram = tuple(histogram.tolist())
entropy = st_.entropy(histogram).item()
output = [
_StatisticOf(measures) for _StatisticOf in (min, max, _Median, _Mean, _Std)
]
output.extend((histogram, entropy))
return tuple(output)