Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
# Copyright CNRS/Inria/UNS
# Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
import re as re_
import numpy as np_
import math as mt_
import scipy.stats as st_
import pandas as pd_
from brick.component.soma import soma_t
from brick.general.type import array_t
import brick.processing.best_fit_ellipsoid as bf_
import brick.processing.input as in_
from typing import Tuple, Dict, Union, Any
def FindGraphsRootWithEdges(soma: soma_t, ext_nfo: Dict[str, Union[array_t, Any]]) -> dict:
"""
Finds the soma roots of the graph extension.
"""
# For a given soma, find the roots of the graphs
root_nodes = {}
# Finds the primary extensions
primary_extension_uids = tuple(extension.uid for extension in soma.extensions)
# print(primary_extension_uids, '\nn = ', len(primary_extension_uids))
# List of the degree 1 nodes of the graph
for node1_id, node2_id, edge_nfo in soma.skl_graph.edges.data('as_edge_t'):
if (soma.skl_graph.degree[node1_id] == 1) or (soma.skl_graph.degree[node2_id] == 1):
# Find the pixels of the terminal extension
sites = ext_nfo['lmp_soma'][edge_nfo.sites]
ext_uid = np_.unique(sites)[-1]
# sites > 0 because ext_nfo['lmp'] do not contain the connexions
# Save the root node candidates (one-degree nodes)
if ext_uid in primary_extension_uids:
if soma.skl_graph.degree[node1_id] == 1:
root_node = node1_id
else:
root_node = node2_id
# Get the node coordinates and extend them to the 26 neighboring voxels
root_node_coor = GetNodesCoordinates((root_node,))[0] # tuple('x-y-z') -> list[(x,y,z)]
root_sites = set(
(root_node_coor[0] + i, root_node_coor[1] + j, root_node_coor[2] + k)
for i in (-1, 0, 1)
for j in (-1, 0, 1)
for k in (-1, 0, 1)
if i != 0 or j != 0 or k != 0)
# Find the intersection between the extended root node candidate and the soma contour points
intersections = set(soma.contour_points).intersection(root_sites)
# if the graph root sites are included in the soma extensions sites (non-nul intersection):
if len(intersections) > 0:
# Keep the info of the root node. Key = ext uid, Value = root node
root_nodes[ext_uid] = root_node
## By construction, only one root node possible for an ext
return root_nodes # TODO: find out why there are less root points than extensions !!
def FindGraphsRootWithNodes(soma: soma_t) -> dict:
"""
Find the roots of the {extension+connexion} graphs to be lined to the soma.
Add a key "root" (bool) in the dict of nodes attributes.
"""
# Find the nodes of degree == 1, and the str coordinates of the nodes
node_degree_bool = tuple(degree == 1 for _, degree in soma.skl_graph.degree)
node_coord = tuple(xyz for xyz, _ in soma.skl_graph.degree)
root_nodes = {}
# get the coordinates of the nodes (x,y,z)
coordinates = GetNodesCoordinates(node_coord)
# get a list with elements = (extension_uid, root coordinates), which length is the number of primary extensions
roots = soma.ext_roots
# for each node in the graph, search among the degree 1 nodes the nodes that are roots (linked to soma)
for node in range(len(coordinates)):
if node_degree_bool[node]:
# compare the coor with end points
for ext_root in roots:
if ext_root[1] == coordinates[node]:
root_nodes[ext_root[0]] = node_coord[node]
if root_nodes.__len__() != roots.__len__():
# raise ValueError("Number of extensions roots not equal to number of graph roots.")
print(f"\nNumber of extensions roots: {root_nodes.__len__()} not equal to number of graph roots: {roots.__len__()}.")
return root_nodes
def GetNodesCoordinates(node_coord: Tuple[str, ...]) -> list:
"""
Input: nodes attributes -> Tuple('x1-y1-z1', 'x2-y2-z2', ...) .
Output: coordinates -> List[Tuple(x1,y1,z1), Tuple(x2,y2,z2), ...]
"""
coord = []
for c in node_coord:
coord.append(c)
for node in range(len(node_coord)):
coord_node = coord[node]
pattern = r"\d+"
coord_node = re_.findall(pattern, coord_node)
coor = []
for i in range(3):
coor.append(int(coord_node[i]))
coor = tuple(coor)
coord[node] = coor
return coord
def ExtractFeaturesInDF(name_file, somas, size_voxel_in_micron: list, bins_length:array_t, bins_curvature:array_t, scale_map: array_t, decimals: int = 4, condition=None, duration=None):
"""
Extract the features from somas and graphs.
Returns a pandas dataframe, without NaN.
"""
# Store the condition and duration of the image
if (condition is None) or (duration is None):
Condition = re_.findall(r"[A-Z]{3}", name_file)[0]
Duration = re_.findall(r"\dH", name_file)
# Find our whether the duration is in hours or in weeks
if Duration.__len__() == 0:
Duration = re_.findall(r"\dW", name_file)[0]
else:
Duration = Duration[0]
somas_features_dict = {} # Dict{soma 1: [features], soma 2: [features], ...}
columns = [
"condition",
"duration",
"soma uid",
"coef_V_soma__V_convex_hull",
"coef_axes_ellips_b__a",
"coef_axes_ellips_c__a",
"spherical_angles_eva",
"spherical_angles_evb",
#
"N_nodes",
"N_ext",
"N_primary_ext",
"N_sec_ext",
"min_degree",
"mean_degree",
"median_degree",
"max_degree",
"std_degree",
#
"total_ext_length",
"min_length",
"mean_length",
"median_length",
"max_length",
"std_lengths",
"entropy_lengths",
"hist_lengths",
"min_thickness",
"mean_thickness",
"median_thickness",
"max_thickness",
"std_thickness",
"entropy_thickness",
"min_volume",
"mean_volume",
"median_volume",
"max_volume",
"std_volume",
"entropy_volume",
"min_curvature",
"max_curvature",
"mean_curvature",
"median_curvature",
"std_curvature",
"entropy_curvature",
"hist_curvature",
"min_torsion",
"max_torsion",
"mean_torsion",
"median_torsion",
"std_torsion",
"entropy_torsion",
#
"total_ext_length_P",
"min_length_P",
"mean_length_P",
"median_length_P",
"max_length_P",
"std_lengths_P",
"entropy_lengths_P",
"hist_lengths_P",
"min_thickness_P",
"mean_thickness_P",
"median_thickness_P",
"max_thickness_P",
"std_thickness_P",
"entropy_thickness_P",
"min_volume_P",
"mean_volume_P",
"median_volume_P",
"max_volume_P",
"std_volume_P",
"entropy_volume_P",
"min_curvature_P",
"max_curvature_P",
"mean_curvature_P",
"median_curvature_P",
"std_curvature_P",
"entropy_curvature_P",
"hist_curvature_P",
"min_torsion_P",
"max_torsion_P",
"mean_torsion_P",
"median_torsion_P",
"std_torsion_P",
"entropy_torsion_P",
#
"total_ext_length_S",
"min_length_S",
"mean_length_S",
"median_length_S",
"max_length_S",
"std_lengths_S",
"entropy_lengths_S",
"hist_lengths_S",
"min_thickness_S",
"mean_thickness_S",
"median_thickness_S",
"max_thickness_S",
"std_thickness_S",
"entropy_thickness_S",
"min_volume_S",
"mean_volume_S",
"median_volume_S",
"max_volume_S",
"std_volume_S",
"entropy_volume_S",
"min_curvature_S",
"max_curvature_S",
"mean_curvature_S",
"median_curvature_S",
"std_curvature_S",
"entropy_curvature_S",
"hist_curvature_S",
"min_torsion_S",
"max_torsion_S",
"mean_torsion_S",
"median_torsion_S",
"std_torsion_S",
"entropy_torsion_S",
]
for soma in somas:
# -- Soma features
# Axes of the best fitting ellipsoid
# a > b > c
_, _, soma.axes_ellipsoid, _, spherical_coor,_, volume_convex_hull = bf_.FindBestFittingEllipsoid3D(soma)
# This ratios give info about the shape of the soma. ex: rather flat, rather patatoide, rather spherical...
if type(soma.axes_ellipsoid[0]) is str:
Coef_axes_ellips_b__a = None
Coef_axes_ellips_c__a = None
spherical_angles_eva = None
spherical_angles_evb = None
soma.volume_soma_micron = None
Coef_V_soma__V_convex_hull = None
else:
Coef_axes_ellips_b__a = soma.axes_ellipsoid[0] / soma.axes_ellipsoid[2]
Coef_axes_ellips_c__a = soma.axes_ellipsoid[1] / soma.axes_ellipsoid[2]
# Spherical angles give the orientation of the somas in the 3D volume
spherical_angles_eva = (spherical_coor[0][1], spherical_coor[0][2])
spherical_angles_evb = (spherical_coor[1][1], spherical_coor[1][2])
# Volume of the in micron**3
soma.volume_soma_micron = in_.ToMicron(len(soma.sites[0]), size_voxel_in_micron, dimension=(0, 1, 2), decimals=2)
# Calculates volume of soma's convex hull in voxel volume
# Take into account anisotropy of the 3D space ( volume = x * y * z with z > x=y)
volume_convex_hull = volume_convex_hull * size_voxel_in_micron[2] / size_voxel_in_micron[0]
# Volume of the soma / Volume of its convex hull gives the info about the convexity of the soma
# If close to 0, the soma has a lot of invaginations, if close to 1, it is smooth and convex
Coef_V_soma__V_convex_hull = len(soma.sites[0]) / round(volume_convex_hull + 0.5)
# -- Extension features
# Graph features
# number of nodes except the constructed ones from node soma to the roots
N_nodes = soma.skl_graph.n_nodes - len(soma.graph_roots)
# number of edges except the constructed ones from node soma to the roots
N_ext = soma.skl_graph.n_edges - len(soma.graph_roots)
# number of primary edges = linked to the soma except the constructed ones from node soma to the roots
N_primary_ext = len(soma.graph_roots)
# number of secondary edges = not linked to the soma.
N_sec_ext = N_ext - N_primary_ext
print(
f" Soma {soma.uid}\n"
f"N nodes = {N_nodes}\n"
f"N edges = {N_ext}\n"
f"N primary extensions = {N_primary_ext}\n"
f"N secondary extensions = {N_sec_ext}\n"
)
if N_primary_ext > 0:
# Calculate the extensions lengths
ext_lengths = list(soma.skl_graph.edge_lengths)
for idx, length in enumerate(ext_lengths):
ext_lengths[idx] = in_.ToMicron(length, size_voxel_in_micron, decimals=decimals)
total_ext_length = in_.ToMicron(soma.skl_graph.length, size_voxel_in_micron, decimals=decimals)
# Lengths histogram
hist_lengths = np_.histogram(ext_lengths, bins_length)[0]
#
# min, mean, median, max and standard deviation of the ALL extensions
min_length = in_.ToMicron(soma.skl_graph.min_length, size_voxel_in_micron, decimals=decimals)
mean_length = in_.ToMicron(soma.skl_graph.mean_length, size_voxel_in_micron, decimals=decimals)
median_length = in_.ToMicron(soma.skl_graph.median_length, size_voxel_in_micron, decimals=decimals)
max_length = in_.ToMicron(soma.skl_graph.max_length, size_voxel_in_micron, decimals=decimals)
std_lengths = np_.std(ext_lengths)
if any(ext_lengths) > 0:
entropy_lengths = st_.entropy(ext_lengths)
else:
entropy_lengths = 0
#
# Find the thickness of the extensions
for ___, ___, edge in soma.skl_graph.edges.data("as_edge_t"):
if edge is not None:
edge.widths = scale_map[edge.sites] * size_voxel_in_micron[1]
mean_widths = soma.skl_graph.edge_reduced_widths()
ext_thickness = np_.array(mean_widths) ** 2
min_thickness = min(ext_thickness)
mean_thickness = np_.mean(ext_thickness)
median_thickness = np_.median(ext_thickness)
max_thickness = max(ext_thickness)
std_thickness = np_.std(ext_thickness)
if any(ext_lengths) > 0:
entropy_thickness = st_.entropy(ext_thickness)
else:
entropy_thickness = 0
#
# Find the volume of the extensions
ext_volume = np_.array(ext_lengths) * ext_thickness
min_volume = min(ext_volume)
mean_volume = np_.mean(ext_volume)
median_volume = np_.median(ext_volume)
max_volume = max(ext_volume)
std_volume = np_.std(ext_volume)
if any(ext_volume) > 0:
entropy_volume = st_.entropy(ext_volume)
else:
entropy_volume = 0
#
# Curvature and Torsion
curvatures, torsions = soma.skl_graph.curvature_and_torsion(size_voxel=size_voxel_in_micron)
#
min_curvature = min(curvatures)
max_curvature = max(curvatures)
mean_curvature = np_.mean(curvatures)
median_curvature = np_.median(curvatures)
std_curvature = np_.std(curvatures)
if any(curvatures) > 0:
entropy_curvature = st_.entropy(curvatures)
else:
entropy_curvature = 0
hist_curvature = np_.histogram(curvatures, bins_curvature)[0]
#
min_torsion = min(torsions)
max_torsion = max(torsions)
mean_torsion = np_.mean(torsions)
median_torsion = np_.median(torsions)
std_torsion = np_.std(torsions)
if any(torsions) > 0:
entropy_torsion = st_.entropy(torsions)
else:
entropy_torsion = 0
# PRIMARY extensions
ext_lengths_P = list(soma.skl_graph.primary_edge_lengths(soma))
for idx, length in enumerate(ext_lengths_P):
ext_lengths_P[idx] = in_.ToMicron(length, size_voxel_in_micron, decimals=decimals)
total_ext_length_P = sum(ext_lengths_P)
#
# Lengths histogram
hist_lengths_P = np_.histogram(ext_lengths_P, bins_length)[0]
#
# min, mean, median, max and standard deviation of the PRIMARY extensions
min_length_P = min(ext_lengths_P)
mean_length_P = np_.mean(ext_lengths_P)
median_length_P = np_.median(ext_lengths_P)
max_length_P = max(ext_lengths_P)
std_lengths_P = np_.std(ext_lengths_P)
if any(ext_lengths_P) > 0:
entropy_lengths_P = st_.entropy(ext_lengths_P)
else:
entropy_lengths_P = 0
#
mean_widths_P = soma.skl_graph.P_edge_reduced_widths(soma)
ext_thickness_P = np_.array(mean_widths_P) ** 2
min_thickness_P = min(ext_thickness_P)
mean_thickness_P = np_.mean(ext_thickness_P)
median_thickness_P = np_.median(ext_thickness_P)
max_thickness_P = max(ext_thickness_P)
std_thickness_P = np_.std(ext_thickness_P)
if any(ext_thickness_P) > 0:
entropy_thickness_P = st_.entropy(ext_thickness_P)
else:
entropy_thickness_P = 0
#
#
ext_volume_P = np_.array(ext_lengths_P) * ext_thickness_P
min_volume_P = min(ext_volume_P)
mean_volume_P = np_.mean(ext_volume_P)
median_volume_P = np_.median(ext_volume_P)
max_volume_P = max(ext_volume_P)
std_volume_P = np_.std(ext_volume_P)
if any(ext_volume_P) > 0:
entropy_volume_P = st_.entropy(ext_volume_P)
else:
entropy_volume_P = 0
#
# Curvature and Torsion
curvatures_P, torsions_P = soma.skl_graph.P_curvature_and_torsion(size_voxel=size_voxel_in_micron, soma=soma)
#
min_curvature_P = min(curvatures_P)
max_curvature_P = max(curvatures_P)
mean_curvature_P = np_.mean(curvatures_P)
median_curvature_P = np_.median(curvatures_P)
std_curvature_P = np_.std(curvatures_P)
if any(curvatures_P) > 0:
entropy_curvature_P = st_.entropy(curvatures_P)
else:
entropy_curvature_P = 0
hist_curvature_P = np_.histogram(curvatures_P, bins_curvature)[0]
#
min_torsion_P = min(torsions_P)
max_torsion_P = max(torsions_P)
mean_torsion_P = np_.mean(torsions_P)
median_torsion_P = np_.median(torsions_P)
std_torsion_P = np_.std(torsions_P)
if any(torsions_P) > 0:
entropy_torsion_P = st_.entropy(torsions_P)
else:
entropy_torsion_P = 0
#
# Secondary extensions
if N_sec_ext > 0:
# min, mean, median, max and standard deviation of the degrees of non-leaves nodes
min_degree = soma.skl_graph.min_degree_except_leaves_and_roots
mean_degree = soma.skl_graph.mean_degree_except_leaves_and_roots
median_degree = soma.skl_graph.median_degree_except_leaves_and_roots
max_degree = soma.skl_graph.max_degree_except_leaves_an_roots
std_degree = soma.skl_graph.std_degree_except_leaves_and_roots
# SECONDARY extensions length
ext_lengths_S = list(soma.skl_graph.secondary_edge_lengths(soma))
for idx, length in enumerate(ext_lengths_S):
ext_lengths_S[idx] = in_.ToMicron(length, size_voxel_in_micron, decimals=decimals)
total_ext_length_S = sum(ext_lengths_S)
#
# Lengths histogram
hist_lengths_S = np_.histogram(ext_lengths_S, bins_length)[0]
#
# min, mean, median, max and standard deviation of the PRIMARY extensions
min_length_S = min(ext_lengths_S)
mean_length_S = np_.mean(ext_lengths_S)
median_length_S = np_.median(ext_lengths_S)
max_length_S = max(ext_lengths_S)
std_lengths_S = np_.std(ext_lengths_S)
if any(ext_lengths_S) > 0:
entropy_lengths_S = st_.entropy(ext_lengths_S)
else:
entropy_lengths_S = 0
#
mean_widths_S = soma.skl_graph.S_edge_reduced_widths(soma)
ext_thickness_S = np_.array(mean_widths_S) ** 2
min_thickness_S = min(ext_thickness_S)
mean_thickness_S = np_.mean(ext_thickness_S)
median_thickness_S = np_.median(ext_thickness_S)
max_thickness_S = max(ext_thickness_S)
std_thickness_S = np_.std(ext_thickness_S)
if any(ext_thickness_S) > 0:
entropy_thickness_S = st_.entropy(ext_thickness_S)
else:
entropy_thickness_S = 0
#
ext_volume_S = np_.array(ext_lengths_S) * ext_thickness_S
min_volume_S = min(ext_volume_S)
mean_volume_S = np_.mean(ext_volume_S)
median_volume_S = np_.median(ext_volume_S)
max_volume_S = max(ext_volume_S)
std_volume_S = np_.std(ext_volume_S)
if any(ext_volume_S) > 0:
entropy_volume_S = st_.entropy(ext_volume_S)
else:
entropy_volume_S = 0
#
# Curvature and Torsion
curvatures_S, torsions_S = soma.skl_graph.S_curvature_and_torsion(size_voxel=size_voxel_in_micron, soma=soma)
#
min_curvature_S = min(curvatures_S)
max_curvature_S = max(curvatures_S)
mean_curvature_S = np_.mean(curvatures_S)
median_curvature_S = np_.median(curvatures_S)
std_curvature_S = np_.std(curvatures_S)
if any(curvatures_S) > 0:
entropy_curvature_S = st_.entropy(curvatures_S)
else:
entropy_curvature_S = 0
hist_curvature_S = np_.histogram(ext_lengths_S, bins_curvature)[0]
#
min_torsion_S = min(torsions_S)
max_torsion_S = max(torsions_S)
mean_torsion_S = np_.mean(torsions_S)
median_torsion_S = np_.median(torsions_S)
std_torsion_S = np_.std(torsions_S)
if any(torsions_S) > 0:
entropy_torsion_S = st_.entropy(torsions_S)
else:
entropy_torsion_S = 0
#
# If no secondary extensions, give certain value to parameters
if N_sec_ext == 0:
# min, mean, median, max and standard deviation of the degrees of non-leaves nodes
min_degree = 1
mean_degree = 1
median_degree = 1
max_degree = 1
std_degree = 0
total_ext_length_S = 0
min_length_S = 0
mean_length_S = 0
median_length_S = 0
max_length_S = 0
std_lengths_S = 0
entropy_lengths_S = 0
hist_lengths_S = 0
#
min_thickness_S = 0
mean_thickness_S = 0
median_thickness_S = 0
max_thickness_S = 0
std_thickness_S = 0
entropy_thickness_S = 0
#
min_volume_S = 0
mean_volume_S = 0
median_volume_S = 0
max_volume_S = 0
std_volume_S = 0
entropy_volume_S = 0
#
min_curvature_S = -1
max_curvature_S = -1
mean_curvature_S = -1
median_curvature_S = -1
std_curvature_S = 0
entropy_curvature_S = 0
hist_curvature_S = 0
#
min_torsion_S = -1
max_torsion_S = -1
mean_torsion_S = -1
median_torsion_S = -1
std_torsion_S = 0
entropy_torsion_S = 0
else:
min_degree = 0
mean_degree = 0
median_degree = 0
max_degree = 0
std_degree = 0
#
total_ext_length = 0
min_length = 0
mean_length = 0
median_length = 0
max_length = 0
std_lengths = 0
entropy_lengths = 0
hist_lengths = 0
min_thickness = 0
mean_thickness = 0
median_thickness = 0
max_thickness = 0
std_thickness = 0
entropy_thickness = 0
min_volume = 0
mean_volume = 0
median_volume = 0
max_volume = 0
std_volume = 0
entropy_volume = 0
min_curvature = -1
max_curvature = -1
mean_curvature = -1
median_curvature = -1
std_curvature = 0
entropy_curvature = 0
hist_curvature = 0
min_torsion = -1
max_torsion= -1
mean_torsion = -1
median_torsion = -1
std_torsion = 0
entropy_torsion = 0
#
total_ext_length_P = 0
min_length_P = 0
mean_length_P = 0
median_length_P = 0
max_length_P = 0
std_lengths_P = 0
entropy_lengths_P = 0
hist_lengths_P = 0
min_thickness_P = 0
mean_thickness_P = 0
median_thickness_P = 0
max_thickness_P = 0
std_thickness_P = 0
entropy_thickness_P = 0
min_volume_P = 0
mean_volume_P = 0
median_volume_P = 0
max_volume_P = 0
std_volume_P = 0
entropy_volume_P = 0
min_curvature_P = -1
max_curvature_P = -1
mean_curvature_P = -1
median_curvature_P = -1
std_curvature_P = 0
entropy_curvature_P = 0
hist_curvature_P = 0
min_torsion_P = -1
max_torsion_P = -1
mean_torsion_P = -1
median_torsion_P = -1
std_torsion_P = 0
entropy_torsion_P = 0
#
total_ext_length_S = 0
min_length_S = 0
mean_length_S = 0
median_length_S = 0
max_length_S = 0
std_lengths_S = 0
entropy_lengths_S = 0
hist_lengths_S = 0
min_thickness_S = 0
mean_thickness_S = 0
median_thickness_S = 0
max_thickness_S = 0
std_thickness_S = 0
entropy_thickness_S = 0
min_volume_S = 0
mean_volume_S = 0
median_volume_S = 0
max_volume_S = 0
std_volume_S = 0
entropy_volume_S = 0
min_curvature_S = -1
max_curvature_S = -1
mean_curvature_S = -1
median_curvature_S = -1
std_curvature_S = 0
entropy_curvature_S = 0
hist_curvature_S = 0
min_torsion_S = -1
max_torsion_S = -1
mean_torsion_S = -1
median_torsion_S = -1
std_torsion_S = 0
entropy_torsion_S = 0
# Create a dictionary with all the features for every somas
somas_features_dict[name_file + f" soma {soma.uid}"] = [
Condition,
Duration,
soma.uid,
Coef_V_soma__V_convex_hull,
Coef_axes_ellips_b__a,
Coef_axes_ellips_c__a,
spherical_angles_eva,
spherical_angles_evb,
N_nodes,
N_ext,
N_primary_ext,
N_sec_ext,
min_degree,
mean_degree,
median_degree,
max_degree,
std_degree,
#
total_ext_length,
min_length,
mean_length,
median_length,
max_length,
std_lengths,
entropy_lengths,
hist_lengths,
min_thickness,
mean_thickness,
median_thickness,
max_thickness,
std_thickness,
entropy_thickness,
min_volume,
mean_volume,
median_volume,
max_volume,
std_volume,
entropy_volume,
min_curvature,
max_curvature,
mean_curvature,
median_curvature,
std_curvature,
entropy_curvature,
hist_curvature,
min_torsion,
max_torsion,
mean_torsion,
median_torsion,
std_torsion,
entropy_torsion,
#
total_ext_length_P,
min_length_P,
mean_length_P,
median_length_P,
max_length_P,
std_lengths_P,
entropy_lengths_P,
hist_lengths_P,
min_thickness_P,
mean_thickness_P,
median_thickness_P,
max_thickness_P,
std_thickness_P,
entropy_thickness_P,
min_volume_P,
mean_volume_P,
median_volume_P,
max_volume_P,
std_volume_P,
entropy_volume_P,
min_curvature_P,
max_curvature_P,
mean_curvature_P,
median_curvature_P,
std_curvature_P,
entropy_curvature_P,
hist_curvature_P,
min_torsion_P,
max_torsion_P,
mean_torsion_P,
median_torsion_P,
std_torsion_P,
entropy_torsion_P,
#
total_ext_length_S,
min_length_S,
mean_length_S,
median_length_S,
max_length_S,
std_lengths_S,
entropy_lengths_S,
hist_lengths_S,
min_thickness_S,
mean_thickness_S,
median_thickness_S,
max_thickness_S,
std_thickness_S,
entropy_thickness_S,
min_volume_S,
mean_volume_S,
median_volume_S,
max_volume_S,
std_volume_S,
entropy_volume_S,
min_curvature_S,
max_curvature_S,
mean_curvature_S,
median_curvature_S,
std_curvature_S,
entropy_curvature_S,
hist_curvature_S,
min_torsion_S,
max_torsion_S,
mean_torsion_S,
median_torsion_S,
std_torsion_S,
entropy_torsion_S,
]
# Convert the dictionary into pandas dataframe
features_df = pd_.DataFrame.from_dict(somas_features_dict, orient="index", columns=columns)