Mentions légales du service

Skip to content
Snippets Groups Projects
graph_feat_extraction.py 32 KiB
Newer Older
DEBREUVE Eric's avatar
DEBREUVE Eric committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
# Copyright CNRS/Inria/UNS
# Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL  license under French law and
# abiding by the rules of distribution of free software.  You can  use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and  rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty  and the software's author,  the holder of the
# economic rights,  and the successive licensors  have only  limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading,  using,  modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean  that it is complicated to manipulate,  and  that  also
# therefore means  that it is reserved for developers  and  experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and,  more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.

import re as re_
import numpy as np_
import math as mt_
import scipy.stats as st_
import pandas as pd_

from brick.component.soma import soma_t
from brick.general.type import array_t
import brick.processing.best_fit_ellipsoid as bf_
import brick.processing.input as in_
from typing import Tuple, Dict, Union, Any


def FindGraphsRootWithEdges(soma: soma_t, ext_nfo: Dict[str, Union[array_t, Any]]) -> dict:
    """
    Finds the soma roots of the graph extension.
    """
    # For a given soma, find the roots of the graphs
    root_nodes = {}

    # Finds the primary extensions
    primary_extension_uids = tuple(extension.uid for extension in soma.extensions)
    # print(primary_extension_uids, '\nn = ', len(primary_extension_uids))

    # List of the degree 1 nodes of the graph
    for node1_id, node2_id, edge_nfo in soma.skl_graph.edges.data('as_edge_t'):
        if (soma.skl_graph.degree[node1_id] == 1) or (soma.skl_graph.degree[node2_id] == 1):

            # Find the pixels of the terminal extension
            sites = ext_nfo['lmp_soma'][edge_nfo.sites]
            ext_uid = np_.unique(sites)[-1]
            # sites > 0 because ext_nfo['lmp'] do not contain the connexions

            # Save the root node candidates (one-degree nodes)
            if ext_uid in primary_extension_uids:
                if soma.skl_graph.degree[node1_id] == 1:
                    root_node = node1_id
                else:
                    root_node = node2_id

                # Get the node coordinates and extend them to the 26 neighboring voxels
                root_node_coor = GetNodesCoordinates((root_node,))[0]  # tuple('x-y-z') -> list[(x,y,z)]

                root_sites = set(
                    (root_node_coor[0] + i, root_node_coor[1] + j, root_node_coor[2] + k)
                    for i in (-1, 0, 1)
                    for j in (-1, 0, 1)
                    for k in (-1, 0, 1)
                    if i != 0 or j != 0 or k != 0)

                # Find the intersection between the extended root node candidate and the soma contour points
                intersections = set(soma.contour_points).intersection(root_sites)

                # if the graph root sites are included in the soma extensions sites (non-nul intersection):
                if len(intersections) > 0:
                    # Keep the info of the root node. Key = ext uid, Value = root node
                    root_nodes[ext_uid] = root_node
                        ## By construction, only one root node possible for an ext

    return root_nodes  # TODO: find out why there are less root points than extensions !!


def FindGraphsRootWithNodes(soma: soma_t) -> dict:
    """
    Find the roots of the {extension+connexion} graphs to be lined to the soma.
    Add a key "root" (bool) in the dict of nodes attributes.
    """

    # Find the nodes of degree == 1, and the str coordinates of the nodes
    node_degree_bool = tuple(degree == 1 for _, degree in soma.skl_graph.degree)
    node_coord = tuple(xyz for xyz, _ in soma.skl_graph.degree)

    root_nodes = {}

    # get the coordinates of the nodes (x,y,z)
    coordinates = GetNodesCoordinates(node_coord)

    # get a list with elements = (extension_uid, root coordinates), which length is the number of primary extensions
    roots = soma.ext_roots

    # for each node in the graph, search among the degree 1 nodes the nodes that are roots (linked to soma)
    for node in range(len(coordinates)):
        if node_degree_bool[node]:
            # compare the coor with end points
            for ext_root in roots:
                if ext_root[1] == coordinates[node]:
                    root_nodes[ext_root[0]] = node_coord[node]

    if root_nodes.__len__() != roots.__len__():
        # raise ValueError("Number of extensions roots not equal to number of graph roots.")
        print(f"\nNumber of extensions roots: {root_nodes.__len__()} not equal to number of graph roots: {roots.__len__()}.")

    return root_nodes


def GetNodesCoordinates(node_coord: Tuple[str, ...]) -> list:
    """
    Input: nodes attributes -> Tuple('x1-y1-z1', 'x2-y2-z2', ...) .
    Output: coordinates -> List[Tuple(x1,y1,z1), Tuple(x2,y2,z2), ...]
    """
    coord = []
    for c in node_coord:
        coord.append(c)

    for node in range(len(node_coord)):
        coord_node = coord[node]
        pattern = r"\d+"
        coord_node = re_.findall(pattern, coord_node)
        coor = []
        for i in range(3):
            coor.append(int(coord_node[i]))
        coor = tuple(coor)
        coord[node] = coor

    return coord


def ExtractFeaturesInDF(name_file, somas, size_voxel_in_micron: list, bins_length:array_t, bins_curvature:array_t, scale_map: array_t, decimals: int = 4, condition=None, duration=None):
    """
    Extract the features from somas and graphs.
    Returns a pandas dataframe, without NaN.
    """
    # Store the condition and duration of the image
    if (condition is None) or (duration is None):
        Condition = re_.findall(r"[A-Z]{3}", name_file)[0]
        Duration = re_.findall(r"\dH", name_file)
        # Find our whether the duration is in hours or in weeks
        if Duration.__len__() == 0:
            Duration = re_.findall(r"\dW", name_file)[0]
        else:
            Duration = Duration[0]

    somas_features_dict = {}  # Dict{soma 1: [features], soma 2: [features], ...}
    columns = [
        "condition",
        "duration",
        "soma uid",
        "coef_V_soma__V_convex_hull",
        "coef_axes_ellips_b__a",
        "coef_axes_ellips_c__a",
        "spherical_angles_eva",
        "spherical_angles_evb",
        #
        "N_nodes",
        "N_ext",
        "N_primary_ext",
        "N_sec_ext",
        "min_degree",
        "mean_degree",
        "median_degree",
        "max_degree",
        "std_degree",
        #
        "total_ext_length",
        "min_length",
        "mean_length",
        "median_length",
        "max_length",
        "std_lengths",
        "entropy_lengths",
        "hist_lengths",
        "min_thickness",
        "mean_thickness",
        "median_thickness",
        "max_thickness",
        "std_thickness",
        "entropy_thickness",
        "min_volume",
        "mean_volume",
        "median_volume",
        "max_volume",
        "std_volume",
        "entropy_volume",
        "min_curvature",
        "max_curvature",
        "mean_curvature",
        "median_curvature",
        "std_curvature",
        "entropy_curvature",
        "hist_curvature",
        "min_torsion",
        "max_torsion",
        "mean_torsion",
        "median_torsion",
        "std_torsion",
        "entropy_torsion",
        #
        "total_ext_length_P",
        "min_length_P",
        "mean_length_P",
        "median_length_P",
        "max_length_P",
        "std_lengths_P",
        "entropy_lengths_P",
        "hist_lengths_P",
        "min_thickness_P",
        "mean_thickness_P",
        "median_thickness_P",
        "max_thickness_P",
        "std_thickness_P",
        "entropy_thickness_P",
        "min_volume_P",
        "mean_volume_P",
        "median_volume_P",
        "max_volume_P",
        "std_volume_P",
        "entropy_volume_P",
        "min_curvature_P",
        "max_curvature_P",
        "mean_curvature_P",
        "median_curvature_P",
        "std_curvature_P",
        "entropy_curvature_P",
        "hist_curvature_P",
        "min_torsion_P",
        "max_torsion_P",
        "mean_torsion_P",
        "median_torsion_P",
        "std_torsion_P",
        "entropy_torsion_P",
        #
        "total_ext_length_S",
        "min_length_S",
        "mean_length_S",
        "median_length_S",
        "max_length_S",
        "std_lengths_S",
        "entropy_lengths_S",
        "hist_lengths_S",
        "min_thickness_S",
        "mean_thickness_S",
        "median_thickness_S",
        "max_thickness_S",
        "std_thickness_S",
        "entropy_thickness_S",
        "min_volume_S",
        "mean_volume_S",
        "median_volume_S",
        "max_volume_S",
        "std_volume_S",
        "entropy_volume_S",
        "min_curvature_S",
        "max_curvature_S",
        "mean_curvature_S",
        "median_curvature_S",
        "std_curvature_S",
        "entropy_curvature_S",
        "hist_curvature_S",
        "min_torsion_S",
        "max_torsion_S",
        "mean_torsion_S",
        "median_torsion_S",
        "std_torsion_S",
        "entropy_torsion_S",
    ]

    for soma in somas:
        # -- Soma features

        # Axes of the best fitting ellipsoid
        # a > b > c
        _, _, soma.axes_ellipsoid, _, spherical_coor,_, volume_convex_hull = bf_.FindBestFittingEllipsoid3D(soma)

        # This ratios give info about the shape of the soma. ex: rather flat, rather patatoide, rather spherical...
        if type(soma.axes_ellipsoid[0]) is str:
            Coef_axes_ellips_b__a = None
            Coef_axes_ellips_c__a = None
            spherical_angles_eva = None
            spherical_angles_evb = None
            soma.volume_soma_micron = None
            Coef_V_soma__V_convex_hull = None
        else:
            Coef_axes_ellips_b__a = soma.axes_ellipsoid[0] / soma.axes_ellipsoid[2]
            Coef_axes_ellips_c__a = soma.axes_ellipsoid[1] / soma.axes_ellipsoid[2]

            # Spherical angles give the orientation of the somas in the 3D volume
            spherical_angles_eva = (spherical_coor[0][1], spherical_coor[0][2])
            spherical_angles_evb = (spherical_coor[1][1], spherical_coor[1][2])

            # Volume of the  in micron**3
            soma.volume_soma_micron = in_.ToMicron(len(soma.sites[0]), size_voxel_in_micron, dimension=(0, 1, 2), decimals=2)
            # Calculates volume of soma's convex hull in voxel volume
            # Take into account anisotropy of the 3D space ( volume = x * y * z with z > x=y)
            volume_convex_hull = volume_convex_hull * size_voxel_in_micron[2] / size_voxel_in_micron[0]

            # Volume of the soma / Volume of its convex hull gives the info about the convexity of the soma
            # If close to 0, the soma has a lot of invaginations, if close to 1, it is smooth and convex
            Coef_V_soma__V_convex_hull = len(soma.sites[0]) / round(volume_convex_hull + 0.5)

        # -- Extension features
        # Graph features

        # number of nodes except the constructed ones from node soma to the roots
        N_nodes = soma.skl_graph.n_nodes - len(soma.graph_roots)
        # number of edges except the constructed ones from node soma to the roots
        N_ext = soma.skl_graph.n_edges - len(soma.graph_roots)
        # number of primary edges = linked to the soma except the constructed ones from node soma to the roots
        N_primary_ext = len(soma.graph_roots)
        # number of secondary edges = not linked to the soma.
        N_sec_ext = N_ext - N_primary_ext

        print(
            f" Soma {soma.uid}\n"
            f"N nodes = {N_nodes}\n"
            f"N edges = {N_ext}\n"
            f"N primary extensions = {N_primary_ext}\n"
            f"N secondary extensions = {N_sec_ext}\n"
        )

        if N_primary_ext > 0:
            # Calculate the extensions lengths
            ext_lengths = list(soma.skl_graph.edge_lengths)
            for idx, length in enumerate(ext_lengths):
                ext_lengths[idx] = in_.ToMicron(length, size_voxel_in_micron, decimals=decimals)
            total_ext_length = in_.ToMicron(soma.skl_graph.length, size_voxel_in_micron, decimals=decimals)

            # Lengths histogram
            hist_lengths = np_.histogram(ext_lengths, bins_length)[0]
            #
            # min, mean, median, max and standard deviation of the ALL extensions
            min_length = in_.ToMicron(soma.skl_graph.min_length, size_voxel_in_micron, decimals=decimals)
            mean_length = in_.ToMicron(soma.skl_graph.mean_length, size_voxel_in_micron, decimals=decimals)
            median_length = in_.ToMicron(soma.skl_graph.median_length, size_voxel_in_micron, decimals=decimals)
            max_length = in_.ToMicron(soma.skl_graph.max_length, size_voxel_in_micron, decimals=decimals)
            std_lengths = np_.std(ext_lengths)
            if any(ext_lengths) > 0:
                entropy_lengths = st_.entropy(ext_lengths)
            else:
                entropy_lengths = 0

            #
            # Find the thickness of the extensions
            for ___, ___, edge in soma.skl_graph.edges.data("as_edge_t"):
                if edge is not None:
                    edge.widths = scale_map[edge.sites] * size_voxel_in_micron[1]
            mean_widths = soma.skl_graph.edge_reduced_widths()
            ext_thickness = np_.array(mean_widths) ** 2
            min_thickness = min(ext_thickness)
            mean_thickness = np_.mean(ext_thickness)
            median_thickness = np_.median(ext_thickness)
            max_thickness = max(ext_thickness)
            std_thickness = np_.std(ext_thickness)
            if any(ext_lengths) > 0:
                entropy_thickness = st_.entropy(ext_thickness)
            else:
                entropy_thickness = 0
            #
            # Find the volume of the extensions
            ext_volume = np_.array(ext_lengths) * ext_thickness
            min_volume = min(ext_volume)
            mean_volume = np_.mean(ext_volume)
            median_volume = np_.median(ext_volume)
            max_volume = max(ext_volume)
            std_volume = np_.std(ext_volume)
            if any(ext_volume) > 0:
                entropy_volume = st_.entropy(ext_volume)
            else:
                entropy_volume = 0
            #
            # Curvature and Torsion
            curvatures, torsions = soma.skl_graph.curvature_and_torsion(size_voxel=size_voxel_in_micron)
            #
            min_curvature = min(curvatures)
            max_curvature = max(curvatures)
            mean_curvature = np_.mean(curvatures)
            median_curvature = np_.median(curvatures)
            std_curvature = np_.std(curvatures)
            if any(curvatures) > 0:
                entropy_curvature = st_.entropy(curvatures)
            else:
                entropy_curvature = 0
            hist_curvature = np_.histogram(curvatures, bins_curvature)[0]
            #
            min_torsion = min(torsions)
            max_torsion = max(torsions)
            mean_torsion = np_.mean(torsions)
            median_torsion = np_.median(torsions)
            std_torsion = np_.std(torsions)
            if any(torsions) > 0:
                entropy_torsion = st_.entropy(torsions)
            else:
                entropy_torsion = 0

            # PRIMARY extensions
            ext_lengths_P = list(soma.skl_graph.primary_edge_lengths(soma))
            for idx, length in enumerate(ext_lengths_P):
                ext_lengths_P[idx] = in_.ToMicron(length, size_voxel_in_micron, decimals=decimals)
            total_ext_length_P = sum(ext_lengths_P)
            #
            # Lengths histogram
            hist_lengths_P = np_.histogram(ext_lengths_P, bins_length)[0]
            #
            # min, mean, median, max and standard deviation of the PRIMARY extensions
            min_length_P = min(ext_lengths_P)
            mean_length_P = np_.mean(ext_lengths_P)
            median_length_P = np_.median(ext_lengths_P)
            max_length_P = max(ext_lengths_P)
            std_lengths_P = np_.std(ext_lengths_P)
            if any(ext_lengths_P) > 0:
                entropy_lengths_P = st_.entropy(ext_lengths_P)
            else:
                entropy_lengths_P = 0

            #
            mean_widths_P = soma.skl_graph.P_edge_reduced_widths(soma)
            ext_thickness_P = np_.array(mean_widths_P) ** 2

            min_thickness_P = min(ext_thickness_P)
            mean_thickness_P = np_.mean(ext_thickness_P)
            median_thickness_P = np_.median(ext_thickness_P)
            max_thickness_P = max(ext_thickness_P)
            std_thickness_P = np_.std(ext_thickness_P)
            if any(ext_thickness_P) > 0:
                entropy_thickness_P = st_.entropy(ext_thickness_P)
            else:
                entropy_thickness_P = 0

            #
            #
            ext_volume_P = np_.array(ext_lengths_P) * ext_thickness_P
            min_volume_P = min(ext_volume_P)
            mean_volume_P = np_.mean(ext_volume_P)
            median_volume_P = np_.median(ext_volume_P)
            max_volume_P = max(ext_volume_P)
            std_volume_P = np_.std(ext_volume_P)
            if any(ext_volume_P) > 0:
                entropy_volume_P = st_.entropy(ext_volume_P)
            else:
                entropy_volume_P = 0

            #
            # Curvature and Torsion
            curvatures_P, torsions_P = soma.skl_graph.P_curvature_and_torsion(size_voxel=size_voxel_in_micron, soma=soma)
            #
            min_curvature_P = min(curvatures_P)
            max_curvature_P = max(curvatures_P)
            mean_curvature_P = np_.mean(curvatures_P)
            median_curvature_P = np_.median(curvatures_P)
            std_curvature_P = np_.std(curvatures_P)
            if any(curvatures_P) > 0:
                entropy_curvature_P = st_.entropy(curvatures_P)
            else:
                entropy_curvature_P = 0

            hist_curvature_P = np_.histogram(curvatures_P, bins_curvature)[0]
            #
            min_torsion_P = min(torsions_P)
            max_torsion_P = max(torsions_P)
            mean_torsion_P = np_.mean(torsions_P)
            median_torsion_P = np_.median(torsions_P)
            std_torsion_P = np_.std(torsions_P)
            if any(torsions_P) > 0:
                entropy_torsion_P = st_.entropy(torsions_P)
            else:
                entropy_torsion_P = 0
            #
            # Secondary extensions
            if N_sec_ext > 0:
                # min, mean, median, max and standard deviation of the degrees of non-leaves nodes
                min_degree = soma.skl_graph.min_degree_except_leaves_and_roots
                mean_degree = soma.skl_graph.mean_degree_except_leaves_and_roots
                median_degree = soma.skl_graph.median_degree_except_leaves_and_roots
                max_degree = soma.skl_graph.max_degree_except_leaves_an_roots
                std_degree = soma.skl_graph.std_degree_except_leaves_and_roots

                # SECONDARY extensions length
                ext_lengths_S = list(soma.skl_graph.secondary_edge_lengths(soma))
                for idx, length in enumerate(ext_lengths_S):
                    ext_lengths_S[idx] = in_.ToMicron(length, size_voxel_in_micron, decimals=decimals)
                total_ext_length_S = sum(ext_lengths_S)
                #
                # Lengths histogram
                hist_lengths_S = np_.histogram(ext_lengths_S, bins_length)[0]
                #
                # min, mean, median, max and standard deviation of the PRIMARY extensions
                min_length_S = min(ext_lengths_S)
                mean_length_S = np_.mean(ext_lengths_S)
                median_length_S = np_.median(ext_lengths_S)
                max_length_S = max(ext_lengths_S)
                std_lengths_S = np_.std(ext_lengths_S)
                if any(ext_lengths_S) > 0:
                    entropy_lengths_S = st_.entropy(ext_lengths_S)
                else:
                    entropy_lengths_S = 0

                #
                mean_widths_S = soma.skl_graph.S_edge_reduced_widths(soma)
                ext_thickness_S = np_.array(mean_widths_S) ** 2
                min_thickness_S = min(ext_thickness_S)
                mean_thickness_S = np_.mean(ext_thickness_S)
                median_thickness_S = np_.median(ext_thickness_S)
                max_thickness_S = max(ext_thickness_S)
                std_thickness_S = np_.std(ext_thickness_S)
                if any(ext_thickness_S) > 0:
                    entropy_thickness_S = st_.entropy(ext_thickness_S)
                else:
                    entropy_thickness_S = 0

                #
                ext_volume_S = np_.array(ext_lengths_S) * ext_thickness_S
                min_volume_S = min(ext_volume_S)
                mean_volume_S = np_.mean(ext_volume_S)
                median_volume_S = np_.median(ext_volume_S)
                max_volume_S = max(ext_volume_S)
                std_volume_S = np_.std(ext_volume_S)
                if any(ext_volume_S) > 0:
                    entropy_volume_S = st_.entropy(ext_volume_S)
                else:
                    entropy_volume_S = 0

                #
                # Curvature and Torsion
                curvatures_S, torsions_S = soma.skl_graph.S_curvature_and_torsion(size_voxel=size_voxel_in_micron, soma=soma)
                #
                min_curvature_S = min(curvatures_S)
                max_curvature_S = max(curvatures_S)
                mean_curvature_S = np_.mean(curvatures_S)
                median_curvature_S = np_.median(curvatures_S)
                std_curvature_S = np_.std(curvatures_S)
                if any(curvatures_S) > 0:
                    entropy_curvature_S = st_.entropy(curvatures_S)
                else:
                    entropy_curvature_S = 0


                hist_curvature_S = np_.histogram(ext_lengths_S, bins_curvature)[0]
                #
                min_torsion_S = min(torsions_S)
                max_torsion_S = max(torsions_S)
                mean_torsion_S = np_.mean(torsions_S)
                median_torsion_S = np_.median(torsions_S)
                std_torsion_S = np_.std(torsions_S)
                if any(torsions_S) > 0:
                    entropy_torsion_S = st_.entropy(torsions_S)
                else:
                    entropy_torsion_S = 0
                #
            # If no secondary extensions, give certain value to parameters
            if N_sec_ext == 0:
                 # min, mean, median, max and standard deviation of the degrees of non-leaves nodes
                min_degree = 1
                mean_degree = 1
                median_degree = 1
                max_degree = 1
                std_degree = 0

                total_ext_length_S = 0
                min_length_S = 0
                mean_length_S = 0
                median_length_S = 0
                max_length_S = 0
                std_lengths_S = 0
                entropy_lengths_S = 0
                hist_lengths_S = 0
                #
                min_thickness_S = 0
                mean_thickness_S = 0
                median_thickness_S = 0
                max_thickness_S = 0
                std_thickness_S = 0
                entropy_thickness_S = 0
                #
                min_volume_S = 0
                mean_volume_S = 0
                median_volume_S = 0
                max_volume_S = 0
                std_volume_S = 0
                entropy_volume_S = 0
                #
                min_curvature_S = -1
                max_curvature_S = -1
                mean_curvature_S = -1
                median_curvature_S = -1
                std_curvature_S = 0
                entropy_curvature_S = 0
                hist_curvature_S = 0
                #
                min_torsion_S = -1
                max_torsion_S = -1
                mean_torsion_S = -1
                median_torsion_S = -1
                std_torsion_S = 0
                entropy_torsion_S = 0

        else:
            min_degree = 0
            mean_degree = 0
            median_degree = 0
            max_degree = 0
            std_degree = 0
            #
            total_ext_length = 0
            min_length = 0
            mean_length = 0
            median_length = 0
            max_length = 0
            std_lengths = 0
            entropy_lengths = 0
            hist_lengths = 0
            min_thickness = 0
            mean_thickness = 0
            median_thickness = 0
            max_thickness = 0
            std_thickness = 0
            entropy_thickness = 0
            min_volume = 0
            mean_volume = 0
            median_volume = 0
            max_volume = 0
            std_volume = 0
            entropy_volume = 0
            min_curvature = -1
            max_curvature = -1
            mean_curvature = -1
            median_curvature = -1
            std_curvature = 0
            entropy_curvature = 0
            hist_curvature = 0
            min_torsion = -1
            max_torsion= -1
            mean_torsion = -1
            median_torsion = -1
            std_torsion = 0
            entropy_torsion = 0
            #
            total_ext_length_P = 0
            min_length_P = 0
            mean_length_P = 0
            median_length_P = 0
            max_length_P = 0
            std_lengths_P = 0
            entropy_lengths_P = 0
            hist_lengths_P = 0
            min_thickness_P = 0
            mean_thickness_P = 0
            median_thickness_P = 0
            max_thickness_P = 0
            std_thickness_P = 0
            entropy_thickness_P = 0
            min_volume_P = 0
            mean_volume_P = 0
            median_volume_P = 0
            max_volume_P = 0
            std_volume_P = 0
            entropy_volume_P = 0
            min_curvature_P = -1
            max_curvature_P = -1
            mean_curvature_P = -1
            median_curvature_P = -1
            std_curvature_P = 0
            entropy_curvature_P = 0
            hist_curvature_P = 0
            min_torsion_P = -1
            max_torsion_P = -1
            mean_torsion_P = -1
            median_torsion_P = -1
            std_torsion_P = 0
            entropy_torsion_P = 0
            #
            total_ext_length_S = 0
            min_length_S = 0
            mean_length_S = 0
            median_length_S = 0
            max_length_S = 0
            std_lengths_S = 0
            entropy_lengths_S = 0
            hist_lengths_S = 0
            min_thickness_S = 0
            mean_thickness_S = 0
            median_thickness_S = 0
            max_thickness_S = 0
            std_thickness_S = 0
            entropy_thickness_S = 0
            min_volume_S = 0
            mean_volume_S = 0
            median_volume_S = 0
            max_volume_S = 0
            std_volume_S = 0
            entropy_volume_S = 0
            min_curvature_S = -1
            max_curvature_S = -1
            mean_curvature_S = -1
            median_curvature_S = -1
            std_curvature_S = 0
            entropy_curvature_S = 0
            hist_curvature_S = 0
            min_torsion_S = -1
            max_torsion_S = -1
            mean_torsion_S = -1
            median_torsion_S = -1
            std_torsion_S = 0
            entropy_torsion_S = 0

        # Create a dictionary with all the features for every somas
        somas_features_dict[name_file + f" soma {soma.uid}"] = [
            Condition,
            Duration,
            soma.uid,
            Coef_V_soma__V_convex_hull,
            Coef_axes_ellips_b__a,
            Coef_axes_ellips_c__a,
            spherical_angles_eva,
            spherical_angles_evb,
            N_nodes,
            N_ext,
            N_primary_ext,
            N_sec_ext,
            min_degree,
            mean_degree,
            median_degree,
            max_degree,
            std_degree,
            #
            total_ext_length,
            min_length,
            mean_length,
            median_length,
            max_length,
            std_lengths,
            entropy_lengths,
            hist_lengths,
            min_thickness,
            mean_thickness,
            median_thickness,
            max_thickness,
            std_thickness,
            entropy_thickness,
            min_volume,
            mean_volume,
            median_volume,
            max_volume,
            std_volume,
            entropy_volume,
            min_curvature,
            max_curvature,
            mean_curvature,
            median_curvature,
            std_curvature,
            entropy_curvature,
            hist_curvature,
            min_torsion,
            max_torsion,
            mean_torsion,
            median_torsion,
            std_torsion,
            entropy_torsion,
            #
            total_ext_length_P,
            min_length_P,
            mean_length_P,
            median_length_P,
            max_length_P,
            std_lengths_P,
            entropy_lengths_P,
            hist_lengths_P,
            min_thickness_P,
            mean_thickness_P,
            median_thickness_P,
            max_thickness_P,
            std_thickness_P,
            entropy_thickness_P,
            min_volume_P,
            mean_volume_P,
            median_volume_P,
            max_volume_P,
            std_volume_P,
            entropy_volume_P,
            min_curvature_P,
            max_curvature_P,
            mean_curvature_P,
            median_curvature_P,
            std_curvature_P,
            entropy_curvature_P,
            hist_curvature_P,
            min_torsion_P,
            max_torsion_P,
            mean_torsion_P,
            median_torsion_P,
            std_torsion_P,
            entropy_torsion_P,
            #
            total_ext_length_S,
            min_length_S,
            mean_length_S,
            median_length_S,
            max_length_S,
            std_lengths_S,
            entropy_lengths_S,
            hist_lengths_S,
            min_thickness_S,
            mean_thickness_S,
            median_thickness_S,
            max_thickness_S,
            std_thickness_S,
            entropy_thickness_S,
            min_volume_S,
            mean_volume_S,
            median_volume_S,
            max_volume_S,
            std_volume_S,
            entropy_volume_S,
            min_curvature_S,
            max_curvature_S,
            mean_curvature_S,
            median_curvature_S,
            std_curvature_S,
            entropy_curvature_S,
            hist_curvature_S,
            min_torsion_S,
            max_torsion_S,
            mean_torsion_S,
            median_torsion_S,
            std_torsion_S,
            entropy_torsion_S,
        ]

    # Convert the dictionary into pandas dataframe
    features_df = pd_.DataFrame.from_dict(somas_features_dict, orient="index", columns=columns)

    return features_df