Newer
Older
# Copyright CNRS/Inria/UNS
# Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
import pandas as pd_
import numpy as np_
import matplotlib.pyplot as pl_
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import scipy as si_
import seaborn as sb_
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
def PCAOnDF(df: pd_.DataFrame(),
target: str,
targets: List[str],
colors: List[str],
save_name: str = None,
title: str = ""
) -> list:
'''
Perform 2D PCA on the CHO-DIO dataframe.
Print ratio variance and plot the PCA.
'''
# Separating the features from their conditions and durations
all_target = pd_.DataFrame(df.loc[:, [target]].values, columns=[target])
df_all = df.drop([target], axis=1)
# Standardize the data
scaler = StandardScaler()
scaler.fit(df_all)
stand_df = scaler.transform(df_all)
# Create the PCA and fit the data
pca = PCA(n_components=2)
principal_components = pca.fit_transform(stand_df)
print(f"PCA explained variance ratio ({save_name}): ", pca.explained_variance_ratio_)
principal_df = pd_.DataFrame(data=principal_components, columns=['principal component 1', 'principal component 2'])
# Give the final df containing the principal component and their condition
final_df = pd_.concat([principal_df, all_target[target]], axis=1)
# Plot
fig = pl_.figure(figsize=(8, 8))
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel('Principal Component 1', fontsize=15)
ax.set_ylabel('Principal Component 2', fontsize=15)
ax.set_title(f'2 component PCA{title}', fontsize=20)
for tgt, color in zip(targets, colors):
idx = final_df[target] == tgt
ax.scatter(final_df.loc[idx, 'principal component 1']
, final_df.loc[idx, 'principal component 2']
, c=color
, s=30)
ax.legend(targets)
ax.grid()
if save_name is not None:
pl_.savefig(f"D:\\MorganeNadal\\2_RESULTS\\Results_wo_erosion\\Features_analysis\\PCA_{save_name}.png")
return pca.explained_variance_ratio_
target: str,
plot_bar: bool = True,
rep_on_image: bool = False,
labeled_somas=None,
elbow: bool = False,
intracluster_var: bool = True,
) -> KMeans:
'''
Perform kmeans on the pandas dataframe. Can find the best number of cluster with elbow method,
find the intracluster variance, and represent the result on the initial images.
Returns kmeans.
'''
# Separating the features from their conditions and durations
all_target = pd_.DataFrame(df.loc[:, [target]].values, columns=[target])
df = df.drop([target], axis=1)
# Data standardization
scaler = StandardScaler()
# Best number of clusters using Elbow method
if elbow:
wcss = [] # within cluster sum of errors(wcss)
for i in range(1, 24):
kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
kmeans.fit(stand_df)
wcss.append(kmeans.inertia_)
pl_.plot(range(1, 24), wcss)
pl_.plot(range(1, 24), wcss, 'bo')
pl_.title('Elbow Method')
pl_.xlabel('Number of clusters')
pl_.ylabel('WCSS')
pl_.show(block=True)
pl_.close()
NADAL Morgane
committed
# Kmeans with x clusters
for nb_cluster in nb_clusters:
kmeans = KMeans(n_clusters=nb_cluster, init='k-means++', max_iter=300, n_init=10, random_state=0)
kmeans.fit_predict(stand_df)
label_df = pd_.DataFrame(data=kmeans.labels_, columns=['label'])
lab_cond_df = pd_.concat([label_df, all_target[target]], axis=1)
if intracluster_var:
var_df = pd_.DataFrame(stand_df)
var = IntraClusterVariance(var_df, kmeans, nb_cluster)
# Barplot
if plot_bar:
fig = pl_.figure(figsize=(8, 8))
ax = fig.add_subplot(1, 1, 1)
sb_.countplot(x="condition", hue="label", data=lab_cond_df, palette=sb_.color_palette("deep", n_colors=2))
ax.set_title(f'Distribution of the clustering labels according to conditions{title}', fontsize=11)
ax.grid()
if save_name is not None:
pl_.savefig(f"D:\\MorganeNadal\\2_RESULTS\\Results_wo_erosion\\Features_analysis\\Hist_Clustering_{save_name}.png")
# pl_.show(block=True)
# pl_.close()
NADAL Morgane
committed
RepresentationOnImages(labeled_somas, kmeans, nb_cluster)
return kmeans
def IntraClusterVariance(df: pd_.DataFrame(), kmeans: KMeans(), nb_cluster: int) -> list:
'''
Return the intracluster variance of a given cluster found by kmeans.
'''
var = []
for cluster in range(nb_cluster):
soma_cluster = [indx for indx, value in enumerate(kmeans.labels_) if value == cluster]
mean_cluster = np_.average([df.iloc[row, :] for row in soma_cluster], axis=0)
variance = sum([np_.linalg.norm(df.iloc[row, :] - mean_cluster) ** 2 for row in soma_cluster]) / (len(soma_cluster) - 1)
var.append(variance)
print(f"Intracluster variance for {nb_cluster} clusters :", var)
return var
NADAL Morgane
committed
def RepresentationOnImages(labeled_somas, kmeans, nb_cluster):
'''
Represent the result of kmeans on labeled image. IN DVPT. Only available for a kmean intra-image.
'''
NADAL Morgane
committed
clustered_somas = labeled_somas.copy()
clustered_somas = np_.amax(clustered_somas, axis=0)
for indx, value in enumerate(kmeans.labels_):
for indx_axe, axe in enumerate(clustered_somas):
for indx_pixel, pixel in enumerate(axe):
if pixel == indx + 1:
clustered_somas[indx_axe][indx_pixel] = value + 1
pl_.imshow(clustered_somas, cmap="tab20")
pl_.title(f"n cluster = {nb_cluster}")
pl_.show(block=True)
pl_.close()
def FeaturesStatistics(df: pd_.DataFrame(),
save_in: str = None,
title: str = "",
):
'''
Return the statistics allowing the user to choose the most relevant features to feed ML algorithms for ex.
'''
# Overview of the basic stats on each columns of df
description = df.describe()
if save_in is not None:
description.to_csv(f"{save_in}\\df_stat_description.csv")
df_scalar = df.drop(["duration", "condition"], axis=1)
df_cond = df.drop(["duration"], axis=1)
df_groupby_cond = df.drop("duration", axis=1).groupby("condition")
df_groupby_dur = df.groupby("duration")
condition = pd_.DataFrame(df.loc[:, ["condition"]].values, columns=["condition"])
# Overview of features distribution and correlation
## /!\ if too many features, error in seaborn display
## Even by splitting the data : too intense!
# Plot heat map with correlation matrix btw features
# Compute the correlation matrix
print("Heat map with correlation matrix btw features")
corr_matrix = df_scalar.corr().abs()
# Generate a mask for the upper triangle
mask = np_.triu(np_.ones_like(corr_matrix, dtype=np_.bool))
# Set up the figure
fig, ax = pl_.subplots(figsize=(13, 9))
# Generate a custom diverging colormap
cmap = sb_.diverging_palette(220, 10, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
sb_.heatmap(corr_matrix, mask=mask, cmap=cmap, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}, xticklabels=False)
ax.set_title(f'Features correlation heat map{title}', fontsize=20)
if save_in is not None:
pl_.savefig(f"{save_in}\\Features correlation heat map{title}.png")
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Drop highly correlated features
print("Drop highly correlated features")
# Select upper triangle of correlation matrix
upper = corr_matrix.where(np_.triu(np_.ones(corr_matrix.shape), k=1).astype(np_.bool))
# Find index of feature columns with correlation greater than 0.9
to_drop = [column for column in upper.columns if any(upper[column] > 0.9)]
# Drop features
drop_HCF_df = df_scalar.drop(df[to_drop], axis=1)
if save_in:
drop_HCF_df.to_csv(f"{save_in}\\df_drop_highly_corr_feat.csv")
print(f"Selection of low correlated features in: {save_in}\\df_drop_highly_corr_feat.csv")
# Statistics for each features
dict_ks = {}
dict_wx = {}
dict_ks_dur = {}
dict_wx_dur = {}
for column in df_scalar.columns:
cond_col_df = pd_.concat((df_scalar[column], df_cond["condition"]), axis=1)
fig = pl_.figure(constrained_layout=False)
gs = fig.add_gridspec(ncols=2, nrows=1)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
# Plot a histogram and kernel density estimate
print(f"Plot a histogram and kernel density estimate for feature {column}")
CHO = cond_col_df.loc[cond_col_df['condition'] == "CHO"]
DIO = cond_col_df.loc[cond_col_df['condition'] == "DIO"]
sb_.distplot(CHO[[column]], color="b", ax=ax1)
sb_.distplot(DIO[[column]], color="r", ax=ax1)
# Draw a boxplot
print(f"Plot a boxplot for feature {column}")
sb_.boxplot(data=df_cond, x="condition", y=column, hue="condition", palette=["b", "r"], ax=ax2)
ax1.set_title(f'{column} distribution{title}', fontsize=11)
ax2.set_title(f'{column} boxplot{title}', fontsize=11)
pl_.tight_layout()
if save_in is not None:
pl_.savefig(f"{save_in}\\feat_distrib_{column}.png")
pl_.close()
# Compare distribution between conditions (goodness of fit)
print(f"Kolmogorov-Smirnov between conditions")
ks = si_.stats.kstest(CHO[[column]], DIO[[column]])
dict_ks[column] = ks
# Compare median between conditions
print(f"Wilcoxon signed-rank test between conditions")
wx = si_.stats.wilcoxon(CHO[[column]], DIO[[column]])
dict_wx[column] = wx
# For each duration between conditions
for duration, values in df_groupby_dur:
dict_ks_dur[duration] = {}
dict_wx_dur[duration] = {}
duration_df = values.drop(["duration"])
CHO_ = duration_df.loc[duration_df['condition'] == "CHO"]
DIO_ = duration_df.loc[duration_df['condition'] == "DIO"]
# Compare distribution
print(f"Kolmogorov-Smirnov between conditions")
ks2 = si_.stats.kstest(CHO[[column]], DIO[[column]])
dict_ks_dur[duration][column] = ks2
# Compare median
print(f"Wilcoxon signed-rank test between conditions")
wx2 = si_.stats.kstest(CHO[[column]], DIO[[column]])
dict_wx_dur[duration][column] = wx2
df_ks = pd_.DataFrame.from_dict()
df_wx = pd_.DataFrame.from_dict()
df_ks_dur = pd_.DataFrame.from_dict()
df_wx_dur = pd_.DataFrame.from_dict()
stat_tests_df = pd_.concatenate((df_ks, df_wx, df_ks_dur, df_wx_dur))
## If need to concatenate files:
# all_filenames = [i for i in glob.glob('*.{}'.format("csv"))]
# print(all_filenames)
# df = pd_.concat([pd_.read_csv(f, index_col=0) for f in all_filenames])
# df.to_csv(".\combined_features.csv")
## If use labeled somas:
# labeled_somas = np_.load("path.npy")
# df = pd_.read_csv(".\combined_features.csv", index_col=0)
# path = sy_.argv[1]
path = "D:\\MorganeNadal\\2_RESULTS\\Results_wo_erosion"
df0 = pd_.read_csv(path,
# index_col=0,
)
df = df0.drop(["Unnamed: 0"], axis=1)
# Statistical analysis
# For the moment drop the columns with non scalar values, and un-useful values
# - TO BE CHANGED (use distance metrics such as bhattacharyya coef, etc)
df = df.drop(["soma uid",
"spherical_angles_eva", "spherical_angles_evb",
"hist_lengths", "hist_lengths_P", "hist_lengths_S",
"hist_curvature", "hist_curvature_P", "hist_curvature_S"],
axis=1)
df = df.dropna(axis=0, how="any")
# # -- PCA with all the features
# # Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# df_all = df.drop(["duration"], axis=1)
# all_pca = PCAOnDF(df_all, target="condition", targets=["CHO", "DIO"], colors=["b", "r"], save_name="all_features")
#
# # Between the two conditions, for each duration (2 conditions, 3 durations)
# groupby_duration = df.groupby("duration")
# duration_pca = []
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# # print(duration, values.shape)
# # groupby_condition = values.groupby("condition")
# # for cond, val in groupby_condition:
# # print(cond, val.shape)
# ## duration: str, values: pd_.DataFrame()
# duration_df = values.drop(["duration"], axis=1)
# pca = PCAOnDF(duration_df,
# target="condition",
# targets=["CHO", "DIO"],
# colors=["b", "r"],
# save_name=f"{duration}_features",
# title=f" - {duration} Sample")
# duration_pca.append(pca)
# -- K-means with all the features (2 conditions)
# # Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# df_all = df.drop(["duration"], axis=1)
# kmeans = KmeansOnDF(df_all,
# target="condition",
# nb_clusters=(2,),
# elbow=False,
# intracluster_var=True,
# plot_bar=True,
# save_name="all features"
# )
#
# # Between the two conditions, for each duration (2 conditions, 3 durations)
# groupby_duration = df.groupby("duration")
# duration_df = values.drop(["duration"], axis=1)
# kmeans = KmeansOnDF(duration_df,
# target="condition",
# nb_clusters=(2,),
# elbow=False,
# intracluster_var=True,
# plot_bar=True,
# save_name=f"{duration}_features",
# title=f" - {duration} Sample",
# )
## -- Various plots to analyse the data and find discriminant features by statistical analysis
FeaturesStatistics(df,
save_in="D:\\MorganeNadal\\2_RESULTS\\Results_wo_erosion\\Features_analysis",
)
## TODO: Enter selected features here
# selected_features = []
# selected_df = df[selected_features]
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# # -- PCA with selected features
# # Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# df_all = df.drop(["duration"], axis=1)
# all_pca = PCAOnDF(df_all, target="condition", targets=["CHO", "DIO"], colors=["b", "r"], save_name="all_features")
#
# # Between the two conditions, for each duration (2 conditions, 3 durations)
# groupby_duration = df.groupby("duration")
# duration_pca = []
# for duration, values in groupby_duration:
# # print(duration, values.shape)
# # groupby_condition = values.groupby("condition")
# # for cond, val in groupby_condition:
# # print(cond, val.shape)
# ## duration: str, values: pd_.DataFrame()
# duration_df = values.drop(["duration"], axis=1)
# pca = PCAOnDF(duration_df,
# target="condition",
# targets=["CHO", "DIO"],
# colors=["b", "r"],
# save_name=f"{duration}_features",
# title=f" - {duration} Sample")
# duration_pca.append(pca)
# -- K-means with selected features (2 conditions)
# # Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# df_all = df.drop(["duration"], axis=1)
# kmeans = KmeansOnDF(df_all,
# target="condition",
# nb_clusters=(2,),
# elbow=False,
# intracluster_var=True,
# plot_bar=True,
# save_name="all features"
# )
#
# # Between the two conditions, for each duration (2 conditions, 3 durations)
# groupby_duration = df.groupby("duration")
# for duration, values in groupby_duration:
# duration_df = values.drop(["duration"], axis=1)
# kmeans = KmeansOnDF(duration_df,
# target="condition",
# nb_clusters=(2,),
# elbow=False,
# intracluster_var=True,
# plot_bar=True,
# save_name=f"{duration}_features",
# title=f" - {duration} Sample",
# )