Newer
Older
# Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# Time profiling:
# python -m cProfile -o runtime/profiling.log -s name main.py
# Memory profiling:
# python -m memory_profiler main.py
# or
# mprof run main.py
# mprof plot
NADAL Morgane
committed
import brick.component.connection as cn_
import brick.component.extension as xt_
import brick.component.soma as sm_
import brick.general.feedback as fb_
# import brick.processing.image_verification as iv_
from sklgraph.skl_fgraph import skl_graph_t
from sklgraph.skl_map import skl_map_t
import brick.processing.graph_feat_extraction as ge_
NADAL Morgane
committed
import imageio as io_
# from skimage.segmentation import relabel_sequential
import skimage.morphology as mp_
import skimage.measure as ms_
NADAL Morgane
committed
import pandas as pd_
if sy_.argv.__len__() < 2:
print("Missing parameter file argument")
sy_.exit(0)
if not (os_.path.isfile(sy_.argv[1]) and os_.access(sy_.argv[1], os_.R_OK)):
print("Wrong parameter file path or parameter file unreadable")
sy_.exit(0)
data_path = None
channel = None
size_voxel_in_micron = None
soma_low_c = None
soma_high_c = None
soma_selem_micron_c = None
soma_min_area_c = None
ext_low_c = None
ext_high_c = None
ext_selem_micron_c = None
ext_min_area_c = None
max_straight_sq_dist_c = None
max_weighted_length_c = None
scale_range = None
scale_step = None
alpha = None
beta = None
frangi_c = None
bright_on_dark = None
method = None
hist_step_length = None
number_of_bins_length = None
hist_bins_borders_length = None
hist_min_curvature = None
hist_step_curvature = None
number_of_bins_curvature = None
hist_bins_borders_curvature = None
with_plot = None
in_parallel = None
exec(open(sy_.argv[1]).read()) # Only with search_parameters.py (stable version)
NADAL Morgane
committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def NutriMorph(data_path: str,
channel=channel,
size_voxel_in_micron=size_voxel_in_micron,
soma_low_c=soma_low_c,
soma_high_c=soma_high_c,
soma_selem_micron_c=soma_selem_micron_c,
soma_min_area_c=soma_min_area_c,
soma_max_area_c=soma_max_area_c,
adapt_hist_equalization=adapt_hist_equalization,
ext_low_c=ext_low_c,
ext_high_c=ext_high_c,
ext_selem_micron_c=ext_selem_micron_c,
ext_min_area_c=ext_min_area_c,
ext_max_length_c=ext_max_length_c,
max_straight_sq_dist_c=max_straight_sq_dist_c,
max_weighted_length_c=max_weighted_length_c,
scale_range=scale_range,
scale_step=scale_step,
alpha=alpha,
beta=beta,
frangi_c=frangi_c,
diff_mode=diff_mode,
bright_on_dark=bright_on_dark,
method=method,
hist_min_length=hist_min_length,
hist_step_length=hist_step_length,
number_of_bins_length=number_of_bins_length,
hist_bins_borders_length=hist_bins_borders_length,
hist_min_curvature=hist_min_curvature,
hist_step_curvature=hist_step_curvature,
number_of_bins_curvature=number_of_bins_curvature,
hist_bins_borders_curvature=hist_bins_borders_curvature,
with_plot=with_plot,
in_parallel=in_parallel) -> pd_.DataFrame():
soma_t = sm_.soma_t
extension_t = xt_.extension_t
print(f"STARTED: {tm_.strftime('%a, %b %d %Y @ %H:%M:%S')}")
start_time = tm_.time()
# TODO add proper warning with warn module
# --- Images
# Find the name of the file, eq. to the biological tested condition number x
name_file = os_.path.basename(data_path)
print("FILE: ", name_file)
name_file = name_file.replace(".tif", "")
name_dir = os_.path.dirname(data_path)
print("DIR: ", name_dir)
# Find the dimension of the image voxels in micron
# TODO do something more general, here too specific to one microscope metadata
size_voxel_in_micron = in_.FindVoxelDimensionInMicron(data_path, size_voxel_in_micron=size_voxel_in_micron)
# Read the image
image = io_.volread(data_path)
# Image size verification - simple version without user interface
image = in_.ImageVerification(image, channel)
# iv_.image_verification(image, channel) # -> PySide2 user interface # TODO: must return the modified image!
# /!\ conflicts between some versions of PySide2 and Python3
image = image[:, 512:, 512:]
img_shape = image.shape
NADAL Morgane
committed
#
print(f"IMAGE: s.{img_shape} t.{image.dtype} m.{image.min()} M.{image.max()}")
NADAL Morgane
committed
# Intensity relative normalization (between 0 and 1).
# Image for soma normalized for hysteresis
image_for_soma = in_.IntensityNormalizedImage(image)
# Image for extensions not normalized for frangi enhancement
image_for_ext = image.copy()
NADAL Morgane
committed
NADAL Morgane
committed
print(f"NRM-IMG: t.{image_for_soma.dtype} m.{image_for_soma.min():.2f} M.{image_for_soma.max():.2f}")
NADAL Morgane
committed
# --- Initialization
som_nfo = {}
ext_nfo = {}
axes = {}
NADAL Morgane
committed
#
# --- Somas
print("\n--- Soma Detection")
NADAL Morgane
committed
# Change the soma parameters from micron to pixel dimensions, using the previously determined voxel size
soma_min_area_c = in_.ToPixel(soma_min_area_c, size_voxel_in_micron, dimension=(0, 1))
soma_max_area_c = in_.ToPixel(soma_max_area_c, size_voxel_in_micron, dimension=(0, 1))
soma_selem_c = mp_.disk(in_.ToPixel(soma_selem_micron_c, size_voxel_in_micron))
NADAL Morgane
committed
# - Create the maps for enhancing and detecting the soma
# Hysteresis thresholding and closing/opening
som_nfo["map_small"] = soma_t.Map(image_for_soma, soma_low_c, soma_high_c, soma_selem_c)
# Deletion of too small elements
som_nfo["map_small"], som_lmp_small = soma_t.DeleteSmallSomas(som_nfo["map_small"], soma_min_area_c)
# Deletion of too big elements (probably aggregation of cells)
# Separated from the deletion of small elements to avoid extensions to be detected where too big somas were just deleted
som_nfo["map"], som_lmp = soma_t.DeleteBigSomas(som_nfo["map_small"], som_lmp_small, soma_max_area_c)
# Labelling of somas, find the number of somas
som_nfo["lmp"], n_somas = ms_.label(som_nfo["map"], return_num=True)
NADAL Morgane
committed
# po_.MaximumIntensityProjectionZ(som_nfo["lmp"])
NADAL Morgane
committed
# Use relabel instead of label to optimize the algorithm. /!\ But BUG.
# som_nfo["lmp"] = relabel_sequential(som_lmp)[0]
# n_somas = som_nfo["lmp"].max()
NADAL Morgane
committed
# Create the distance and influence maps used next for connexions between somas-extensions and extensions-extensions
som_nfo["dist_to_closest"], som_nfo["influence_map"] = soma_t.InfluenceMaps(som_nfo["lmp"])
NADAL Morgane
committed
# po_.MaximumIntensityProjectionZ(som_nfo["influence_map"])
NADAL Morgane
committed
NADAL Morgane
committed
# Create the tuple somas, containing all the objects 'soma'
somas = tuple(soma_t().FromMap(som_nfo["lmp"], uid) for uid in range(1, n_somas + 1))
NADAL Morgane
committed
print(f" n = {n_somas}")
NADAL Morgane
committed
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
NADAL Morgane
committed
if with_plot:
fb_.PlotSomas(somas, som_nfo, axes)
NADAL Morgane
committed
NADAL Morgane
committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#
# -- Extentions
print("\n--- Extension Detection")
# Set to zeros the pixels belonging to the somas.
# Take into account the aggregation of cells detected as one big soma to avoid extension creation there
del_soma = (som_nfo["map_small"] > 0).nonzero()
image_for_ext[del_soma] = 0
# Change the extensions parameters from micron to pixel dimensions
ext_min_area_c = in_.ToPixel(ext_min_area_c, size_voxel_in_micron, dimension=(0, 1))
ext_max_length_c = in_.ToPixel(ext_max_length_c, size_voxel_in_micron, dimension=(0,))
if ext_selem_micron_c == 0:
ext_selem_pixel_c = None
else:
ext_selem_pixel_c = mp_.disk(in_.ToPixel(ext_selem_micron_c, size_voxel_in_micron))
# scale_range_pixel = []
# #
# for value in scale_range:
# value_in_pixel = in_.ToPixel(value, size_voxel_in_micron, decimals=1)
# scale_range_pixel.append(value_in_pixel)
# scale_range = tuple(scale_range_pixel)
#
# scale_step = in_.ToPixel(scale_step, size_voxel_in_micron, decimals=1)
# - Perform frangi feature enhancement (via python or c - faster - implementation)
enhanced_ext, ext_scales = extension_t.EnhancedForDetection(
image_for_ext,
scale_range,
scale_step,
alpha,
beta,
frangi_c,
bright_on_dark,
method,
diff_mode=diff_mode,
in_parallel=in_parallel)
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"Elapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}\n")
# po_.MaximumIntensityProjectionZ(enhanced_ext, cmap="OrRd")
# - Creation of the enhanced maps
# enhanced_ext = ex_.adjust_log(enhanced_ext, 1) # Not necessary, log contrast adjustment
# Enhanced the contrast in frangi output
if adapt_hist_equalization:
# necessary but not sufficient, histogram equalisation (adaptative)
enhanced_ext = ex_.equalize_adapthist(enhanced_ext)
else:
# necessary but not sufficient, histogram equalisation (global)
enhanced_ext = ex_.equalize_hist(enhanced_ext)
# po_.MaximumIntensityProjectionZ(enhanced_ext, cmap="OrRd")
# Rescale the image by stretching the intensities between 0 and 255, necessary but not sufficient
enhanced_ext = ex_.rescale_intensity(enhanced_ext, out_range=(0, 255))
# Hysteresis thersholding
ext_nfo["coarse_map"] = extension_t.CoarseMap(enhanced_ext, ext_low_c, ext_high_c, ext_selem_pixel_c)
# po_.MaximumIntensityProjectionZ(ext_nfo["coarse_map"])
# Deletion of too small elements
ext_nfo["coarse_map"], ext_lmp = extension_t.FilteredCoarseMap(ext_nfo["coarse_map"], ext_min_area_c)
# po_.MaximumIntensityProjectionZ(ext_nfo["coarse_map"])
# Creation of the extensions skeleton
ext_nfo["map"] = extension_t.FineMapFromCoarseMap(ext_nfo["coarse_map"])
# TODO delete too long extensions
# ext_nfo["map"] = extension_t.FilteredSkeletonMap(ext_nfo["coarse_map"], ext_max_length_c)
# po_.MaximumIntensityProjectionZ(ext_nfo["map"])
# Deletion of extensions found within the somas
ext_nfo["map"][som_nfo["map"] > 0] = 0
# Labelling of extensions and number of extensions determined
ext_nfo["lmp"], n_extensions = ms_.label(ext_nfo["map"], return_num=True)
# Use relabel instead of label to optimize the algorithm. BUT PROBLEM WITH THE NUMBER OF EXTENSIONS DETECTED !
# ext_nfo["lmp"] = relabel_sequential(ext_lmp)[0]
# n_extensions = ext_nfo["lmp"].max()
# Create the tuple extensions, containing all the objects 'extension'
extensions = tuple(
extension_t().FromMap(ext_nfo["lmp"], ext_scales, uid)
for uid in range(1, n_extensions + 1))
print(f" n = {n_extensions}")
NADAL Morgane
committed
#
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
NADAL Morgane
committed
if with_plot:
fb_.PlotExtensions(extensions, ext_nfo, img_shape)
NADAL Morgane
committed
# -- Preparation for Connections
# Calculate the costs of each pixel on the image
dijkstra_costs = in_.DijkstraCosts(image, som_nfo["map"], ext_nfo["map"])
NADAL Morgane
committed
# -- Soma-Extention
print("\n--- Soma <-> Extension")
NADAL Morgane
committed
NADAL Morgane
committed
# Change the extensions parameters from micron to pixel dimensions
max_straight_sq_dist_c = in_.ToPixel(max_straight_sq_dist_c, size_voxel_in_micron)
max_weighted_length_c = in_.ToPixel(max_weighted_length_c, size_voxel_in_micron)
NADAL Morgane
committed
# Find the candidate extensions, with their endpoints, for connexion to the somas
candidate_conn_nfo = cn_.CandidateConnections(
somas,
som_nfo["influence_map"],
som_nfo["dist_to_closest"],
extensions,
max_straight_sq_dist_c,
)
# For each candidate, verify that it is valid based on the shortest path and the maximum allowed straight distance
for ep_idx, soma, extension, end_point in candidate_conn_nfo:
NADAL Morgane
committed
# Only try to connect if the extension is not already connected
print(f" Soma.{soma.uid} <-?-> Ext.{extension.uid}({ep_idx})", end="")
NADAL Morgane
committed
# Use of Dijkstra shortest weighted path
NADAL Morgane
committed
soma.ContourPointsCloseTo,
max_straight_sq_dist=max_straight_sq_dist_c,
NADAL Morgane
committed
# Keep the connexion only if inferior to the allowed max weighted distance
if length <= max_weighted_length_c:
NADAL Morgane
committed
cn_.ValidateConnection(soma, extension, end_point, path, dijkstra_costs)
NADAL Morgane
committed
# for soma in somas:
# soma.Extend(extensions, som_nfo["dist_to_closest"], dijkstra_costs)
NADAL Morgane
committed
NADAL Morgane
committed
fb_.PrintConnectedExtensions(extensions)
#
NADAL Morgane
committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
if with_plot:
fb_.PlotSomasWithExtensions(somas, som_nfo, "all")
# -- Extention-Extention
print("\n--- Extension <-> Extension")
should_look_for_connections = True
# Update the soma maps with next Ext-Ext connexions
while should_look_for_connections:
# Update the final somas + ext map by adding the new extensions and their connexion paths
som_nfo["soma_w_ext_lmp"] = soma_t.SomasLMap(somas)
# Update the influence map
som_nfo["dist_to_closest"], som_nfo["influence_map"] = soma_t.InfluenceMaps(som_nfo["soma_w_ext_lmp"])
# Find the candidate extensions for connexion to the primary extensions
candidate_conn_nfo = cn_.CandidateConnections(
somas,
som_nfo["influence_map"],
som_nfo["dist_to_closest"],
extensions,
max_straight_sq_dist_c,
)
NADAL Morgane
committed
NADAL Morgane
committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
should_look_for_connections = False
# For each candidate, verify that it is valid based on the shortest path and the maximum allowed straight distance
for ep_idx, soma, extension, end_point in candidate_conn_nfo:
# Only try to connect if the extension is not already connected
if extension.is_unconnected:
print(f" Soma.{soma.uid} <-?-> Ext.{extension.uid}({ep_idx})", end="")
# Use of Dijkstra shortest weighted path
path, length = cn_.ShortestPathFromToN(
start_time,
end_point,
dijkstra_costs,
soma.ExtensionPointsCloseTo,
max_straight_sq_dist=max_straight_sq_dist_c,
)
# Keep the connexion only if inferior to the allowed max weighted distance
if length <= max_weighted_length_c:
# Verify that the last element of the connexion path is contained in the extension to be connected
# If so, returns the extensions containing the path last site.
tgt_extenstion = extension_t.ExtensionContainingSite(extensions, path[-1])
# Validate connexion: update the glial component objects and store more info in their fields
cn_.ValidateConnection(tgt_extenstion, extension, end_point, path, dijkstra_costs)
# TODO delete too long extensions
should_look_for_connections = True
print(": Made")
else:
print("")
# Create an extension map containing all the ext + connexions, without the somas.
# Used for the graphs extraction
ext_nfo["lmp_soma"] = som_nfo['soma_w_ext_lmp'] - som_nfo['lmp']
fb_.PrintConnectedExtensions(extensions)
NADAL Morgane
committed
NADAL Morgane
committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
if with_plot:
fb_.PlotSomasWithExtensions(somas, som_nfo, "with_ext_of_ext")
# -- Summary
print("\n")
for soma in somas:
print(soma)
# snapshot = tr_.take_snapshot()
# top_file_stats = snapshot.statistics('lineno')
# print("Memory Profiling: Top 10 FILES")
# for stat in top_file_stats[:10]:
# print(stat)
# top_block_stats = snapshot.statistics('traceback')
# top_block_stats = top_block_stats[0]
# print(f"Memory Profiling: {top_block_stats.count} memory blocks: {top_block_stats.size / 1024:.1f} KiB")
# for line in top_block_stats.traceback.format():
# print(line)
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
if with_plot:
pl_.show()
po_.MaximumIntensityProjectionZ(som_nfo['soma_w_ext_lmp'])
# , output_image_file_name=f"D:\\MorganeNadal\\Results\\Images\\{name_file}.png")
# --- Extract all the extensions of all somas as a graph
print('\n--- Graph extraction')
# Create the graphs with SKLGraph module (available on Eric Debreuve Gitlab)
for soma in somas:
print(f" Soma {soma.uid}", end="")
# Create SKLGraph skeletonized map
ext_map = skl_map_t.FromShapeMap(ext_nfo['lmp_soma'] == soma.uid, store_widths=True, skeletonize=False,
do_post_thinning=True)
# do_post_thinning = True, in order to remove pixels that are not breaking connectivity
# Create the graph from the SKLGaph skeletonized map
soma.skl_graph = skl_graph_t.FromSkeleton(ext_map, size_voxel=size_voxel_in_micron)
# --- Find the root of the {ext+conn} graphs.
# Roots are the nodes of degree 1 that are to be linked to the soma
soma.graph_roots = ge_.FindGraphsRootWithNodes(soma)
# Add a node "soma" and link it to the root nodes
soma_node = f"S-{int(soma.centroid[0])}-{int(soma.centroid[1])}-{int(soma.centroid[2])}"
soma.skl_graph.add_node(soma_node, soma=True, soma_nfo=soma)
for node in soma.graph_roots.values():
soma.skl_graph.add_edge(node, soma_node, root=True)
#
# nx_.draw_networkx(soma.skl_graph)
# if with_plot:
# pl_.show(block=True)
#
print(": Done")
elapsed_time = tm_.gmtime(tm_.time() - start_time)
# --- Extract features
print('\n--- Features Extraction\n')
# Parameters
if hist_bins_borders_length is None:
number_of_bins_length = int(number_of_bins_length)
bins_length = np_.linspace(hist_min_length, hist_min_length + hist_step_length * number_of_bins_length,
num=number_of_bins_length)
bins_length[-1] = np_.inf
else:
bins_length = np_.array(hist_bins_borders_length)
bins_length[-1] = np_.inf
if hist_bins_borders_curvature is None:
number_of_bins_curvature = int(number_of_bins_curvature)
bins_curvature = np_.linspace(hist_min_curvature,
hist_min_curvature + hist_step_curvature * number_of_bins_curvature,
num=number_of_bins_curvature)
bins_curvature[-1] = np_.inf
else:
bins_curvature = np_.array(hist_bins_borders_curvature)
bins_curvature[-1] = np_.inf
# Pandas dataframe creation with all the measured features
features_df = ge_.ExtractFeaturesInDF(name_file, somas, size_voxel_in_micron, bins_length, bins_curvature,
ext_scales)
# Save the pandas df into .csv
features_df.to_csv(f"{name_dir}\\{name_file}.csv")
NADAL Morgane
committed
#
elapsed_time = tm_.gmtime(tm_.time() - start_time)
print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}")
print(f"DONE: {tm_.strftime('%a, %b %d %Y @ %H:%M:%S')}")
NADAL Morgane
committed
return features_df
NADAL Morgane
committed
NADAL Morgane
committed
if __name__ == '__main__':
NADAL Morgane
committed
NADAL Morgane
committed
# --- Extract cell graphs and features from microscope images using NutriMorph function.
#
# Differentiate between path to a tiff file or to a repository
if pathlib.Path(data_path).is_file():
# Perform NutriMorph algorithm on the file entered in parameters
features_df = NutriMorph(data_path)
elif pathlib.Path(data_path).is_dir():
# Keep the directory to the repository
name_dir = os_.path.dirname(data_path)
# Initialize the future concatenated features
concatenated_features_df = pd_.DataFrame()
# Find all the tiff files in the parent and child repositories
for path in pathlib.Path(data_path).glob("**/*.tif"):
if path.is_file():
# Perform NutriMorph algorithm
features_df = NutriMorph(path)
# Concatenate all the dataframes
concatenated_features_df = concatenated_features_df.append(features_df)
# Save to .csv in the parent repository
concatenated_features_df.to_csv(f"{data_path}_features.csv")
# --- TODO Clustering with this df and module cell_clustering.py