Mentions légales du service

Skip to content
Snippets Groups Projects
Commit 2708f9ca authored by SKURIC Antun's avatar SKURIC Antun
Browse files

added weighing matrix

parent db8cabe6
No related branches found
No related tags found
No related merge requests found
Pipeline #847230 passed
......@@ -71,13 +71,13 @@ For the robotic manipulators the package integrates several velocity, force and
- Velocity (manipulability) ellipsoid
.. math:: E_{v} = \{\dot{x} ~| \dot{x} = J\dot{q},~ ||\dot{q}||\leq1 \}
.. math:: E_{v} = \{\dot{x} ~| \dot{x} = J\dot{q},~ ||W^{-1}\dot{q}||\leq1 \}, \qquad W = diag(\dot{q}_{max})
- Acceleration (dynamic manipulability) ellipsoid
.. math:: E_{a} = \{\ddot{x} ~| \ddot{x} = JM^{-1}\tau,~ ||\tau||\leq1 \}
.. math:: E_{a} = \{\ddot{x} ~| \ddot{x} = JM^{-1}\tau,~ ||W^{-1}\tau||\leq1 \}, \qquad W = diag(\tau_{max})
- Force ellipsoid
.. math:: E_{f} = \{{f} ~| J^{T}f = \tau,~ ||\tau||\leq1 \}
.. math:: E_{f} = \{{f} ~| J^{T}f = \tau,~ ||W^{-1}\tau||\leq1 \}, \qquad W = diag(\tau_{max})
And polytopes:
......@@ -122,13 +122,13 @@ For the robotic manipulators the package integrates velocity, force and accelera
- Velocity (manipulability) ellipsoid
.. math:: E_f = \{\dot{x}~ |~ J\dot{q} = \dot{x},~ L\dot{q} = \dot{l} \quad ||\dot{l}|| \leq 1\}
.. math:: E_v = \{\dot{x}~ |~ J\dot{q} = \dot{x},~ L\dot{q} = \dot{l} \quad ||^{-1}\dot{l}|| \leq 1\}, \qquad W = diag(\dot{l}_{max})
- Acceleration (dynamic manipulability) ellipsoid
.. math:: E_a = \{\ddot{x}~ |~ \ddot{x} = JM^{-1}NF, \quad ||F|| \leq 1\}
.. math:: E_{a} = \{\ddot{x}~ |~ \ddot{x} = JM^{-1}NF, \quad ||W^{-1}F|| \leq 1\}, \qquad W = diag(F_{max})
- Force ellipsoid
.. math:: E_f = \{f~ |~ NF = J^Tf,\quad ||F||\leq 1\}
.. math:: E_{f} = \{f~ |~ NF = J^Tf,\quad ||W^{-1}F|| \leq 1\}, \qquad W = diag(F_{max})
And polytopes:
......
......@@ -107,17 +107,17 @@ For robotic manipulators the package integrates several velocity, force and acce
- Velocity (manipulability) ellipsoid
\begin{equation}\label{eq:ev_r}
E_{v} = \{\dot{x} ~| \dot{x} = J\dot{q},~ ||\dot{q}||\leq1 \}
E_{v} = \{\dot{x} ~| \dot{x} = J\dot{q},~ ||W^{-1}\dot{q}||\leq1 \}, \qquad W = diag(\dot{q}_{max})
\end{equation}
- Acceleration (dynamic manipulability) ellipsoid
\begin{equation}\label{eq:ea_r}
E_{a} = \{\ddot{x} ~| \ddot{x} = JM^{-1}\tau,~ ||\tau||\leq1 \}
E_{a} = \{\ddot{x} ~| \ddot{x} = JM^{-1}\tau,~ ||W^{-1}\tau||\leq1 \}, \qquad W = diag(\tau_{max})
\end{equation}
- Force ellipsoid
\begin{equation}\label{eq:ef_r}
E_{f} = \{{f} ~| J^{T}f = \tau,~ ||\tau||\leq1 \}
E_{f} = \{{f} ~| J^{T}f = \tau,~ ||W^{-1}\tau||\leq1 \}, \qquad W = diag(\tau_{max})
\end{equation}
### Polytopes
......@@ -168,17 +168,17 @@ For the human musculoskeletal models this package implements the polytope and el
- Velocity (manipulability) ellipsoid
\begin{equation}\label{eq:ev_h}
\{\dot{x}~ |~ J\dot{q} = \dot{x},~ L\dot{q} = \dot{l} \quad ||\dot{l}|| \leq 1\}
E_v = \{\dot{x}~ |~ J\dot{q} = \dot{x},~ L\dot{q} = \dot{l} \quad ||^{-1}\dot{l}|| \leq 1\}, \qquad W = diag(\dot{l}_{max})
\end{equation}
- Acceleration (dynamic manipulability) ellipsoid
\begin{equation}\label{eq:ea_r}
E_{a} = \{\ddot{x}~ |~ \ddot{x} = JM^{-1}NF, \quad ||F|| \leq 1\}
E_{a} = \{\ddot{x}~ |~ \ddot{x} = JM^{-1}NF, \quad ||W^{-1}F|| \leq 1\}, \qquad W = diag(F_{max})
\end{equation}
- Force ellipsoid
\begin{equation}\label{eq:ef_r}
E_{f} = \{f~ |~ NF = J^Tf,\quad ||F|| \leq 1\}
E_{f} = \{f~ |~ NF = J^Tf,\quad ||W^{-1}F|| \leq 1\}, \qquad W = diag(F_{max})
\end{equation}
### Polytopes
......
......@@ -26,7 +26,7 @@ def velocity_ellipsoid(J, N, dl_max):
"""
Human musculoskeletal velocity ellipsoid calculation
.. math:: E_f = \{\dot{x}~ |~ J\dot{q} = \dot{x},~ L\dot{q} = W=\dot{l} \quad ||W^{-1}\dot{l}|| \leq 1\}
.. math:: E_f = \{\dot{x}~ |~ J\dot{q} = \dot{x},~ L\dot{q} = \dot{l} \quad ||W^{-1}\dot{l}|| \leq 1\}
where
......@@ -57,7 +57,7 @@ def acceleration_ellipsoid(J, M, N, F_max):
"""
Human muscuskeletal acceleration ellipsoid calculation (dynamic manipulability ellipsoid)
.. math:: E_a = \{\ddot{x}~ |~ \ddot{x} = JM^{-1}NF, \quad |W^{-1}|F|| \leq 1\}
.. math:: E_a = \{\ddot{x}~ |~ \ddot{x} = JM^{-1}NF, \quad ||W^{-1}F|| \leq 1\}
where
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment