Mentions légales du service

Skip to content
Snippets Groups Projects
Commit bee5b44c authored by Valentin Blot's avatar Valentin Blot
Browse files

Improvements

* New definition of System F terms
* bound is no more admitted
parent 7ef448d7
No related branches found
No related tags found
No related merge requests found
......@@ -33,46 +33,29 @@ Fixpoint type_subst (n : nat) (T : type) (U : type) : type :=
| TForall T => TForall (type_subst (S n) T (type_lift 0 U))
end.
(* Curch-style terms of System F.
(* Derivations in System F.
de Bruijn indices again. *)
Inductive fterm : Type :=
| FVar : nat -> fterm
| FAbs : type -> fterm -> fterm
| FApp : fterm -> fterm -> fterm
| FTAbs : fterm -> fterm
| FTApp : fterm -> type -> fterm.
Inductive fvar : list type -> type -> Type :=
| FVar0 : forall {context : list type} (T : type), fvar (T::context) T
| FVarS : forall {context : list type} {T : type} {U : type}, fvar context T -> fvar (U::context) T.
Inductive fterm : list type -> type -> Type :=
| FVar : forall {context : list type} {T : type}, fvar context T -> fterm context T
| FAbs : forall {context : list type} {T : type} {U : type}, fterm (T::context) U -> fterm context (TArrow T U)
| FApp : forall {context : list type} {T : type} {U : type}, fterm context (TArrow T U) -> fterm context T -> fterm context U
| FTAbs : forall {context : list type} {T : type}, fterm (map (type_lift 0) context) T -> fterm context (TForall T)
| FTApp : forall {context : list type} {T : type}, fterm context (TForall T) -> forall (U : type), fterm context (type_subst 0 T U).
Definition fterm_get_context {context : list type} {T : type} (t : fterm context T) := context.
Definition fterm_get_type {context : list type} {T : type} (t : fterm context T) := T.
(* X.(XX) *)
Definition type1 : type := TForall (TArrow (TVar 0) (TVar 0)).
(* ΛX.λx:X.x *)
Definition term1 : fterm := FTAbs (FAbs (TVar 0) (FVar 0)).
Definition term1 : fterm [] type1 :=
FTAbs (FAbs (FVar (FVar0 (TVar 0)))).
(* X.(XX)→∀X.(XX) *)
Definition type2 : type := (TArrow type1 type1).
(* λx:X(XX).x(X(XX))x *)
Definition term2 : fterm := FAbs (TForall (TArrow (TVar 0) (TVar 0))) (FApp (FTApp (FVar 0) (TForall (TArrow (TVar 0) (TVar 0)))) (FVar 0)).
(* "type_get context t" is the type
of t in context context. *)
Fixpoint type_get (context : list type) (t : fterm) : type :=
match t with
| FVar n => nth n context (TVar 0)
| FAbs T t => TArrow T (type_get (T::context) t)
| FApp t u =>
match type_get context t with
| TArrow T U => U
| _ => TVar 0
end
| FTAbs t => TForall (type_get (map (type_lift 0) context) t)
| FTApp t T =>
match type_get context t with
| TForall U => type_subst 0 U T
| _ => TVar 0
end
end.
(* "type_correct context t" holds if
t is typable in context context. *)
Fixpoint type_correct (context : list type) (t : fterm) : Prop :=
match t with
| FVar n => n < length context
| FAbs T t => type_correct (T::context) t
| FApp t u => type_correct context t /\ type_correct context u /\ exists T, type_get context t = TArrow (type_get context u) T
| FTAbs t => type_correct (map (type_lift 0) context) t
| FTApp t T => type_correct context t /\ exists T, type_get context t = TForall T
end.
Definition term2 : fterm [] type2 :=
FAbs (FApp (FTApp (FVar (FVar0 type1)) type1) (FVar (FVar0 type1))).
(* Untyped lambda-terms.
Still de Bruijn indices. *)
......@@ -82,13 +65,18 @@ Inductive term : Type :=
| App : term -> term -> term.
(* Erasure from Church-style System F
terms to untyped (Curry-style) terms *)
Fixpoint fterm_to_term (t : fterm) : term :=
Fixpoint fvar_to_nat {context : list type} {T : type} (t : fvar context T) : nat :=
match t with
| FVar n => Var n
| FAbs T t => Abs (fterm_to_term t)
| FVar0 _ => 0
| FVarS t => S (fvar_to_nat t)
end.
Fixpoint fterm_to_term {context : list type} {T : type} (t : fterm context T) : term :=
match t with
| FVar t => Var (fvar_to_nat t)
| FAbs t => Abs (fterm_to_term t)
| FApp t u => App (fterm_to_term t) (fterm_to_term u)
| FTAbs t => fterm_to_term t
| FTApp t T => fterm_to_term t
| FTApp t _ => fterm_to_term t
end.
(* "term_equal t u" is true if t and u
are syntactically equal. *)
......@@ -311,6 +299,23 @@ Fixpoint form_lift2 (n : nat) (f : form) : form :=
| FForallp f => FForallp (form_lift2 n f)
| FForall2 f => FForall2 (form_lift2 (S n) f)
end.
Lemma form_lift2_substt : forall m n f t, form_lift2 m (form_substt n f t) = form_substt n (form_lift2 m f) t.
intros m n f; revert m n; induction f; intros m p t; simpl.
destruct (n <? m); reflexivity.
reflexivity.
rewrite IHf1.
rewrite IHf2.
reflexivity.
rewrite IHf1.
rewrite IHf2.
reflexivity.
rewrite IHf.
reflexivity.
rewrite IHf.
reflexivity.
rewrite IHf.
reflexivity.
Qed.
(* "form_subst2 n f g" is f[g/n].
2nd-order variables of f with
index >= n are decremented. *)
......@@ -358,6 +363,33 @@ Fixpoint rc (T : type) : form :=
| TArrow T U => FForallt (FImp (rc T) (form_substt 0 (rc U) (LApp (LMetavar 1) (LLList [LMetavar 0]))))
| TForall T => FForall2 (FImp redcand (rc T))
end.
Lemma form_lift2_rc : forall n U, form_lift2 n (rc U) = rc (type_lift n U).
intros n U; revert n; induction U; intro m; simpl.
destruct (n <? m); reflexivity.
f_equal.
f_equal.
apply IHU1.
rewrite form_lift2_substt.
rewrite IHU2.
reflexivity.
rewrite IHU.
reflexivity.
Qed.
Lemma form_subst2_lift2 : forall m T n U, form_subst2 m (rc T) (form_lift2 n (rc U)) = form_subst2 m (rc T) (rc (type_lift n U)).
intros m T; revert m; induction T; intros m p U; simpl.
destruct (n ?= m).
rewrite form_lift2_rc.
reflexivity.
reflexivity.
reflexivity.
rewrite IHT1.
rewrite form_lift2_rc.
reflexivity.
rewrite IHT.
rewrite form_lift2_rc.
rewrite form_lift2_rc.
reflexivity.
Qed.
(* "form_to_type f" is the type of
realizers of f. *)
......@@ -511,6 +543,21 @@ reflexivity.
rewrite IHf.
reflexivity.
Qed.
Lemma form_to_type_subst2_type_subst : forall T U n, form_to_type (form_subst2 n (rc T) (rc U)) = form_to_type (rc (type_subst n T U)).
intro t; induction t; intros U m; simpl.
destruct (n ?= m); simpl.
apply form_to_type_substt.
reflexivity.
reflexivity.
rewrite IHt1.
rewrite form_to_type_substt.
rewrite form_to_type_subst2_substt.
rewrite IHt2.
reflexivity.
rewrite <- IHt.
rewrite form_subst2_lift2.
reflexivity.
Qed.
(*Lemma form_to_type_subst2_fin2 : forall (f : form) (n : nat) (t : logterm), form_to_type (form_subst2 n (FIn t n) f) = form_to_type f.
intros f n t; simpl.
rewrite Nat.compare_refl.
......@@ -840,70 +887,43 @@ Qed.
H is a proof that t is well-typed
in context context) is the realizer of
RC_{(type_get context t)[U_1...U_n/0]}(t[u_1...u_n/0]) *)
Program Fixpoint adeq (context : list (term * {T : type & form_to_type (rc T)})) (tcontext : list (form_to_type redcand)) (t : fterm) (H : type_correct (map (fun a => projT1 (snd a)) context) t) : form_to_type (rc (type_get (map (fun a => projT1 (snd a)) context) t)) :=
Program Fixpoint adeq_var (tcontext : list (form_to_type redcand)) (context : list (term * {T : type & form_to_type (rc T)})) (T : type) (t : fvar (map (@projT1 type (fun T => form_to_type (rc T))) (map snd context)) T) : form_to_type (rc T) :=
match t with
| FVar0 T => match context with [] => match _ : False with end | (t, existT _ T x)::context => x end
| FVarS t => match context with [] => match _ : False with end | _::context => rew [id] _ in adeq_var tcontext context T t end
end.
Program Fixpoint adeq (tcontext : list (form_to_type redcand)) (context : list (term * {T : type & form_to_type (rc T)})) (T : type) (t : fterm (map (@projT1 type (fun T => form_to_type (rc T))) (map snd context)) T) : form_to_type (rc T) :=
match t with
| FVar n => rew [id] _ in projT2 (snd (nth n context (Var 0, existT _ (TVar 0) 0)))
| FAbs T t =>
| @FVar _ _ t => adeq_var tcontext context _ t
| @FAbs _ T U t =>
fun u y =>
let context := (u, existT _ T y)::context in
rew [id] _ in snd (isrc tcontext (type_get (map (fun a => projT1 (snd a)) context) t)) (term_subst 1 (fterm_to_term t) (map (fun a => term_lift 0 (fst a)) context)) u [] (rew [id] _ in adeq context tcontext t _)
| FApp t u => (rew [id] _ in adeq context tcontext t _) (term_subst 0 (fterm_to_term u) (map (fun a => fst a) context)) (adeq context tcontext u _)
| FTAbs t => fun x => rew [id] _ in adeq (map (fun a => (fst a, existT _ (type_lift 0 (projT1 (snd a))) (rew [id] _ in projT2 (snd a)))) context) (x::tcontext) t _
| FTApp t T =>
let U := match type_get (map (fun a => projT1 (snd a)) context) t with TForall U => U | _ => TVar 0 end in
rew [id] _ in elim (FImp redcand (form_substt 0 (rc U) (term_to_logterm (term_subst 0 (fterm_to_term t) (map (fun a => fst a) context))))) (rc T) (rew [id] _ in adeq context tcontext t _) (isrc tcontext T)
rew [id] _ in snd (isrc tcontext U) (term_subst 1 (fterm_to_term t) (map (fun a => term_lift 0 (fst a)) context)) u [] (rew [id] _ in adeq tcontext context U t)
| @FApp _ T U t u => rew [id] _ in adeq tcontext context (TArrow T U) t (term_subst 0 (fterm_to_term u) (map (fun a => fst a) context)) (adeq tcontext context T u)
| @FTAbs _ T t => fun x => rew [id] _ in adeq (x::tcontext) (map (fun a => (fst a, existT _ (type_lift 0 (projT1 (snd a))) (rew [id] _ in projT2 (snd a)))) context) T t
| @FTApp _ T t U => rew [id] _ in elim (FImp redcand (form_substt 0 (rc T) (term_to_logterm (term_subst 0 (fterm_to_term t) (map (fun a => fst a) context))))) (rc U) (rew [id] _ in adeq tcontext context (TForall T) t) (isrc tcontext U)
end.
Next Obligation.
revert n H.
induction context; intros n H.
rewrite nth_overflow; [ | apply le_0_n ].
rewrite nth_overflow; [ | apply le_0_n ].
reflexivity.
rewrite map_cons.
destruct n.
reflexivity.
simpl nth.
apply IHcontext.
simpl type_correct in *.
apply lt_S_n.
apply H.
Qed.
Next Obligation.
fold form_to_type.
rewrite form_to_type_substt.
reflexivity.
Qed.
Next Obligation.
fold form_to_type.
fold rc.
rewrite form_to_type_substt.
rewrite form_to_type_substt.
reflexivity.
Qed.
Next Obligation.
simpl type_correct in H.
destruct H.
apply H.
Qed.
Next Obligation.
simpl type_correct in H.
destruct H.
destruct H0.
destruct H1.
destruct (type_get _ t); try discriminate.
simpl.
fold form_to_type.
fold rc.
rewrite form_to_type_substt.
injection H1 as H11 H12.
rewrite <- H11.
reflexivity.
Qed.
Next Obligation.
simpl type_correct in H.
destruct H.
destruct H0.
apply H0.
Qed.
Next Obligation.
simpl; clear.
generalize 0.
induction s; simpl; intro m.
simpl.
generalize 0; clear; induction s; intro m; simpl.
destruct (n <? m); reflexivity.
rewrite form_to_type_substt.
rewrite form_to_type_substt.
......@@ -914,88 +934,22 @@ rewrite <- IHs.
reflexivity.
Qed.
Next Obligation.
simpl type_correct in H.
rewrite map_map.
simpl.
rewrite map_map in H.
apply H.
Qed.
Next Obligation.
rewrite map_map.
rewrite map_map.
rewrite map_map.
apply map_ext.
reflexivity.
Qed.
Next Obligation.
simpl type_correct in H.
destruct H.
apply H.
Qed.
Next Obligation.
simpl type_correct in H.
destruct H.
destruct H0.
rewrite H0.
simpl.
rewrite form_to_type_substt.
reflexivity.
Qed.
Next Obligation.
simpl type_correct in H.
destruct H.
destruct H0.
rewrite H0.
rewrite form_to_type_subst2_substt.
clear; revert T.
generalize 0.
clear; induction x; intros m T.
simpl.
destruct (n ?= m); simpl.
rewrite form_to_type_substt.
reflexivity.
reflexivity.
reflexivity.
simpl.
rewrite IHx1.
rewrite form_to_type_substt.
fold form_to_type.
fold form_subst2.
rewrite form_to_type_subst2_substt.
rewrite IHx2.
reflexivity.
simpl.
rewrite (form_to_type_subst2 _ _ _ (rc T)).
rewrite IHx.
assert (forall a b c, b = c -> (a -> b) = (a -> c)).
intros a b c Heq; rewrite Heq; reflexivity.
apply H; clear H.
generalize (S m); clear.
revert T; induction x; intros T m.
simpl.
destruct (n ?= m).
generalize 0; clear; induction T; intro m.
simpl.
destruct (n <? m); reflexivity.
simpl.
rewrite form_to_type_substt.
rewrite form_to_type_substt.
rewrite <- IHT1.
rewrite <- IHT2.
reflexivity.
simpl.
rewrite <- IHT.
reflexivity.
reflexivity.
reflexivity.
simpl.
rewrite form_to_type_substt.
rewrite form_to_type_substt.
rewrite <- IHx1.
rewrite <- IHx2.
reflexivity.
simpl.
rewrite <- IHx.
rewrite <- IHx.
rewrite <- IHx.
reflexivity.
rewrite form_to_type_lift2.
rewrite form_to_type_subst2_type_subst.
reflexivity.
Qed.
......@@ -1004,11 +958,12 @@ Qed.
context) computes a bound a bound
on the number of reduction steps
of t *)
Program Definition bound (t : fterm) (H : type_correct [] t) : nat :=
snd (fst (isrc [] (type_get [] t))) (fterm_to_term t) (adeq [] [] t H) id.
Program Definition bound (T : type) (t : fterm [] T) : nat :=
snd (fst (isrc [] T)) (fterm_to_term t) (rew [id] _ in adeq [] [] T t) id.
Next Obligation.
Admitted.
rewrite form_to_type_substt.
reflexivity.
Qed.
Extract Inductive unit => "unit" [ "()" ].
Extract Inductive bool => "bool" [ "true" "false" ].
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment