Mentions légales du service

Skip to content
Snippets Groups Projects
Unverified Commit 50ba2b86 authored by gdurif's avatar gdurif Committed by GitHub
Browse files

Merge pull request #16 from getspams/update_ssp

Remove unnecessary requirements (linked to Python 2 to 3 switch) and scipy random sparse number generation reimplemantation
parents ce1c69ee ea87a018
No related branches found
No related tags found
No related merge requests found
# Files generated by the tests
dict.png
dict1.png
dict2.png
*.pyc
*.pyo
*.sublime*
......
__all__ = ['myscipy_rand']
from pkg_resources import get_distribution
__version__ = get_distribution('spams').version
from .myscipy_rand import *
from __future__ import absolute_import, division, print_function
import numpy as np
import scipy.sparse as ssp
def rand(m, n, density=0.01, format="coo", dtype=None):
"""Generate a sparse matrix of the given shape and density with uniformely
distributed values.
Parameters
----------
m, n: int
shape of the matrix
density: real
density of the generated matrix: density equal to one means a full
matrix, density of 0 means a matrix with no non-zero items.
format: str
sparse matrix format.
dtype: dtype
type of the returned matrix values.
Notes
-----
Only float types are supported for now.
"""
if density < 0 or density > 1:
raise ValueError("density expected to be 0 <= density <= 1")
if dtype and not dtype in [np.float32, np.float64, np.longdouble]:
raise NotImplementedError("type %s not supported" % dtype)
mn = m * n
# XXX: sparse uses intc instead of intp...
tp = np.intp
if mn > np.iinfo(tp).max:
msg = """\
Trying to generate a random sparse matrix such as the product of dimensions is
greater than %d - this is not supported on this machine
"""
raise ValueError(msg % np.iinfo(tp).max)
# Number of non zero values
k = int(density * m * n)
# Generate a few more values than k so that we can get unique values
# afterwards.
# XXX: one could be smarter here
mlow = 5
fac = 1.02
gk = min(k + mlow, fac * k)
def _gen_unique_rand(_gk):
id = np.random.rand(_gk)
return np.unique(np.floor(id * mn))[:k]
id = _gen_unique_rand(gk)
while id.size < k:
gk *= 1.05
id = _gen_unique_rand(gk)
j = np.floor(id * 1. / m).astype(tp)
i = (id - j * m).astype(tp)
vals = np.random.rand(k).astype(dtype)
return ssp.coo_matrix((vals, (i, j)), shape=(m, n)).asformat(format)
Cython>=0.29
numpy>=1.12
Pillow>=6.0
scipy>=1.0
setuptools>=46.1
six>=1.12
\ No newline at end of file
setuptools>=46.1
\ No newline at end of file
# Inside of setup.cfg
[metadata]
description-file = README.md
description_file = README.md
[global]
verbose = 1
......
......@@ -195,9 +195,8 @@ opts = dict(
},
license='GPLv3',
python_requires='>=3',
install_requires=['Cython>=0.29', 'numpy>=1.12',
'Pillow>=6.0', 'scipy>=1.0', 'six>=1.12'],
packages=['myscipy_rand', 'spams_wrap', 'spams', 'spams.tests'],
install_requires=['numpy>=1.12', 'Pillow>=6.0', 'scipy>=1.0'],
packages=['spams_wrap', 'spams', 'spams.tests'],
cmdclass={'build_ext': CustomBuildExtCommand},
ext_modules=get_extension(),
package_data={
......
This diff is collapsed.
from __future__ import absolute_import, division, print_function
import six.moves
import sys
import numpy as np
import scipy
import scipy.sparse as ssp
import spams
......@@ -119,7 +114,7 @@ def test_l1L2BCD():
D = np.asfortranarray(
D / np.tile(np.sqrt((D*D).sum(axis=0)), (D.shape[0], 1)), dtype=myfloat)
# indices of the first signals in each group
ind_groups = np.array(six.moves.xrange(0, X.shape[1], 10), dtype=np.int32)
ind_groups = np.array(range(0, X.shape[1], 10), dtype=np.int32)
# parameters of the optimization procedure are chosen
itermax = 100
tol = 1e-3
......@@ -293,7 +288,7 @@ def test_somp():
D = np.asfortranarray(np.random.normal(size=(64, 200)))
D = np.asfortranarray(
D / np.tile(np.sqrt((D*D).sum(axis=0)), (D.shape[0], 1)), dtype=myfloat)
ind_groups = np.array(six.moves.xrange(0, 10000, 10), dtype=np.int32)
ind_groups = np.array(range(0, 10000, 10), dtype=np.int32)
tic = time.time()
alpha = spams.somp(X, D, ind_groups, L=10, eps=0.1, numThreads=-1)
tac = time.time()
......
from __future__ import absolute_import, division, print_function
import sys
import os
import numpy as np
import scipy
import scipy.sparse as ssp
from PIL import Image
......@@ -11,23 +7,16 @@ import spams
import time
from test_utils import *
if not ('rand' in ssp.__dict__):
import myscipy_rand
ssprand = myscipy_rand.rand
else:
ssprand = ssp.rand
def get_img_file_path(img):
"""Return path to an image file
Arguments:
img (string): image filename without path among 'boat.png' or
img (string): image filename without path among 'boat.png' or
'lena.png'.
Output:
img_file (string): normalized path to image input filename.
"""
# check input
if not img in ["boat.png", "lena.png"]:
......
from __future__ import absolute_import, division, print_function
import six.moves
import sys
import numpy as np
import scipy
import scipy.sparse as ssp
import spams
import time
from test_utils import *
if not ('rand' in ssp.__dict__):
import myscipy_rand
ssprand = myscipy_rand.rand
else:
ssprand = ssp.rand
ssprand = ssp.rand
def test_sort():
n = 2000000
......@@ -81,7 +71,7 @@ def test_conjGrad():
itermax = int(0.5 * len(b))
tic = time.time()
for i in six.moves.xrange(0, 20):
for i in range(0, 20):
y1 = np.linalg.solve(A, b)
tac = time.time()
print(" Time (numpy): ", tac - tic)
......@@ -89,7 +79,7 @@ def test_conjGrad():
print("Mean error on b : %f" % (x1.sum() / b.shape[0]))
tic = time.time()
for i in six.moves.xrange(0, 20):
for i in range(0, 20):
y2 = spams.conjGrad(A, b, x0, tol, itermax)
# * y2 = spams.conjGrad(A,b)
tac = time.time()
......
from __future__ import absolute_import, division, print_function
import six.moves
import sys
import time
import test_utils
......@@ -68,7 +65,7 @@ def main(argv):
print("**** %s ****" % testname)
# exec('lstm = test_%s.tests' %testname)
lstm = locals()['test_%s' % testname].tests
for i in six.moves.xrange(0, len(lstm), 2):
for i in range(0, len(lstm), 2):
run_test(lstm[i], lstm[i+1])
continue
else:
......@@ -76,7 +73,7 @@ def main(argv):
for m in modules:
# exec('lstm = test_%s.tests' %m)
lstm = locals()['test_%s' % m].tests
for i in six.moves.xrange(0, len(lstm), 2):
for i in range(0, len(lstm), 2):
if (lstm[i] == testname):
found = True
run_test(lstm[i], lstm[i+1])
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment