Something went wrong on our end
-
Mathieu Faverge authoredMathieu Faverge authored
z_spm_matrixvector.c 13.03 KiB
/**
*
* @file z_spm_matrixvector.c
*
* SParse Matrix package matrix-vector multiplication routines.
*
* @copyright 2016-2017 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
* Univ. Bordeaux. All rights reserved.
*
* @version 1.0.0
* @author Mathieu Faverge
* @author Theophile Terraz
* @date 2015-01-01
*
* @precisions normal z -> c d s
**/
#include "common.h"
#include "z_spm.h"
/**
*******************************************************************************
*
* @ingroup spm_dev_matvec
*
* @brief compute the matrix-vector product:
* y = alpha * op( A ) * x + beta * y
*
* A is a SpmGeneral spm, where op( X ) is one of
*
* op( X ) = X or op( X ) = X' or op( X ) = conjg( X' )
*
* alpha and beta are scalars, and x and y are vectors.
*
*******************************************************************************
*
* @param[in] trans
* Specifies whether the matrix spm is transposed, not transposed or
* conjugate transposed:
* = SpmNoTrans: A is not transposed;
* = SpmTrans: A is transposed;
* = SpmConjTrans: A is conjugate transposed.
*
* @param[in] alpha
* alpha specifies the scalar alpha
*
* @param[in] spm
* The SpmGeneral spm.
*
* @param[in] x
* The vector x.
*
* @param[in] beta
* beta specifies the scalar beta
*
* @param[inout] y
* The vector y.
*
*******************************************************************************
*
* @retval SPM_SUCCESS if the y vector has been computed succesfully,
* @retval SPM_ERR_BADPARAMETER otherwise.
*
*******************************************************************************/
int
z_spmGeCSCv(const spm_trans_t trans,
spm_complex64_t alpha,
const spmatrix_t *spm,
const spm_complex64_t *x,
spm_complex64_t beta,
spm_complex64_t *y )
{
const spm_complex64_t *valptr = (spm_complex64_t*)(spm->values);
const spm_complex64_t *xptr = (const spm_complex64_t*)x;
spm_complex64_t *yptr = (spm_complex64_t*)y;
spm_int_t col, row, i, baseval;
if ( (spm == NULL) || (x == NULL) || (y == NULL ) )
{
return SPM_ERR_BADPARAMETER;
}
if( spm->mtxtype != SpmGeneral )
{
return SPM_ERR_BADPARAMETER;
}
baseval = spmFindBase( spm );
/* first, y = beta*y */
if( beta == 0. ) {
memset( yptr, 0, spm->gN * sizeof(spm_complex64_t) );
}
else {
for( i=0; i<spm->gN; i++, yptr++ ) {
(*yptr) *= beta;
}
yptr = y;
}
if( alpha != 0. ) {
/**
* SpmNoTrans
*/
if( trans == SpmNoTrans )
{
for( col=0; col < spm->gN; col++ )
{
for( i=spm->colptr[col]; i<spm->colptr[col+1]; i++ )
{
row = spm->rowptr[i-baseval]-baseval;
yptr[row] += alpha * valptr[i-baseval] * xptr[col];
}
}
}
/**
* SpmTrans
*/
else if( trans == SpmTrans )
{
for( col=0; col < spm->gN; col++ )
{
for( i=spm->colptr[col]; i<spm->colptr[col+1]; i++ )
{
row = spm->rowptr[i-baseval]-baseval;
yptr[col] += alpha * valptr[i-baseval] * xptr[row];
}
}
}
#if defined(PRECISION_c) || defined(PRECISION_z)
else if( trans == SpmConjTrans )
{
for( col=0; col < spm->gN; col++ )
{
for( i=spm->colptr[col]; i<spm->colptr[col+1]; i++ )
{
row = spm->rowptr[i-baseval]-baseval;
yptr[col] += alpha * conj( valptr[i-baseval] ) * xptr[row];
}
}
}
#endif
else
{
return SPM_ERR_BADPARAMETER;
}
}
return SPM_SUCCESS;
}
/**
*******************************************************************************
*
* @ingroup spm_dev_matvec
*
* @brief compute the matrix-vector product:
* y = alpha * A + beta * y
*
* A is a SpmSymmetric spm, alpha and beta are scalars, and x and y are
* vectors, and A a symm.
*
*******************************************************************************
*
* @param[in] alpha
* alpha specifies the scalar alpha
*
* @param[in] spm
* The SpmSymmetric spm.
*
* @param[in] x
* The vector x.
*
* @param[in] beta
* beta specifies the scalar beta
*
* @param[inout] y
* The vector y.
*
*******************************************************************************
*
* @retval SPM_SUCCESS if the y vector has been computed succesfully,
* @retval SPM_ERR_BADPARAMETER otherwise.
*
*******************************************************************************/
int
z_spmSyCSCv( spm_complex64_t alpha,
const spmatrix_t *spm,
const spm_complex64_t *x,
spm_complex64_t beta,
spm_complex64_t *y )
{
const spm_complex64_t *valptr = (spm_complex64_t*)spm->values;
const spm_complex64_t *xptr = x;
spm_complex64_t *yptr = y;
spm_int_t col, row, i, baseval;
if ( (spm == NULL) || (x == NULL) || (y == NULL ) )
{
return SPM_ERR_BADPARAMETER;
}
if( spm->mtxtype != SpmSymmetric )
{
return SPM_ERR_BADPARAMETER;
}
baseval = spmFindBase( spm );
/* First, y = beta*y */
if( beta == 0. ) {
memset( yptr, 0, spm->gN * sizeof(spm_complex64_t) );
}
else {
for( i=0; i<spm->gN; i++, yptr++ ) {
(*yptr) *= beta;
}
yptr = y;
}
if( alpha != 0. ) {
for( col=0; col < spm->gN; col++ )
{
for( i=spm->colptr[col]; i < spm->colptr[col+1]; i++ )
{
row = spm->rowptr[i-baseval]-baseval;
yptr[row] += alpha * valptr[i-baseval] * xptr[col];
if( col != row )
{
yptr[col] += alpha * valptr[i-baseval] * xptr[row];
}
}
}
}
return SPM_SUCCESS;
}
#if defined(PRECISION_c) || defined(PRECISION_z)
/**
*******************************************************************************
*
* @ingroup spm_dev_matvec
*
* @brief compute the matrix-vector product:
* y = alpha * A + beta * y
*
* A is a SpmHermitian spm, alpha and beta are scalars, and x and y are
* vectors, and A a symm.
*
*******************************************************************************
*
* @param[in] alpha
* alpha specifies the scalar alpha
*
* @param[in] spm
* The SpmHermitian spm.
*
* @param[in] x
* The vector x.
*
* @param[in] beta
* beta specifies the scalar beta
*
* @param[inout] y
* The vector y.
*
*******************************************************************************
*
* @retval SPM_SUCCESS if the y vector has been computed succesfully,
* @retval SPM_ERR_BADPARAMETER otherwise.
*
*******************************************************************************/
int
z_spmHeCSCv( spm_complex64_t alpha,
const spmatrix_t *spm,
const spm_complex64_t *x,
spm_complex64_t beta,
spm_complex64_t *y )
{
const spm_complex64_t *valptr = (spm_complex64_t*)spm->values;
const spm_complex64_t *xptr = x;
spm_complex64_t *yptr = y;
spm_int_t col, row, i, baseval;
if ( (spm == NULL) || (x == NULL) || (y == NULL ) )
{
return SPM_ERR_BADPARAMETER;
}
if( spm->mtxtype != SpmHermitian )
{
return SPM_ERR_BADPARAMETER;
}
/* First, y = beta*y */
if( beta == 0. ) {
memset( yptr, 0, spm->gN * sizeof(spm_complex64_t) );
}
else {
for( i=0; i<spm->gN; i++, yptr++ ) {
(*yptr) *= beta;
}
yptr = y;
}
baseval = spmFindBase( spm );
if( alpha != 0. ) {
for( col=0; col < spm->gN; col++ )
{
for( i=spm->colptr[col]; i < spm->colptr[col+1]; i++ )
{
row=spm->rowptr[i-baseval]-baseval;
if( col != row ) {
yptr[row] += alpha * valptr[i-baseval] * xptr[col];
yptr[col] += alpha * conj( valptr[i-baseval] ) * xptr[row];
}
else {
yptr[row] += alpha * creal(valptr[i-baseval]) * xptr[col];
}
}
}
}
return SPM_SUCCESS;
}
#endif
/**
*******************************************************************************
*
* @ingroup spm_dev_matvec
*
* @brief compute the matrix-vector product:
* y = alpha * A + beta * y
*
* A is a SpmHermitian spm, alpha and beta are scalars, and x and y are
* vectors, and A a symm.
*
*******************************************************************************
*
* @param[in] trans
* TODO
*
* @param[in] alphaptr
* alpha specifies the scalar alpha
*
* @param[in] spm
* The SpmHermitian spm.
*
* @param[in] xptr
* The vector x.
*
* @param[in] betaptr
* beta specifies the scalar beta
*
* @param[inout] yptr
* The vector y.
*
*******************************************************************************
*
* @retval SPM_SUCCESS if the y vector has been computed succesfully,
* @retval SPM_ERR_BADPARAMETER otherwise.
*
*******************************************************************************/
int
z_spmCSCMatVec(const spm_trans_t trans,
const void *alphaptr,
const spmatrix_t *spm,
const void *xptr,
const void *betaptr,
void *yptr )
{
const spm_complex64_t *x = (const spm_complex64_t*)xptr;
spm_complex64_t *y = (spm_complex64_t*)yptr;
spm_complex64_t alpha, beta;
alpha = *((const spm_complex64_t *)alphaptr);
beta = *((const spm_complex64_t *)betaptr);
switch (spm->mtxtype) {
#if defined(PRECISION_z) || defined(PRECISION_c)
case SpmHermitian:
return z_spmHeCSCv( alpha, spm, x, beta, y );
#endif
case SpmSymmetric:
return z_spmSyCSCv( alpha, spm, x, beta, y );
case SpmGeneral:
default:
return z_spmGeCSCv( trans, alpha, spm, x, beta, y );
}
}
/**
*******************************************************************************
*
* @ingroup spm_dev_matvec
*
* @brief Compute a matrix-matrix product.
*
* y = alpha * op(A) * B + beta * C
*
* where op(A) is one of:
*
* op( A ) = A or op( A ) = A' or op( A ) = conjg( A' )
*
* alpha and beta are scalars, and x and y are vectors.
*
*******************************************************************************
*
* @param[in] trans
* Specifies whether the matrix spm is transposed, not transposed or conjugate transposed:
* - SpmTrans
* - SpmNoTrans
* - SpmConjTrans
*
* @param[in] n
* The number of columns of the matrices B and C.
*
* @param[in] alpha
* alpha specifies the scalar alpha.
*
* @param[in] A
* The square sparse matrix A
*
* @param[in] B
* The matrix B of size ldb-by-n
*
* @param[in] ldb
* The leading dimension of the matrix B. ldb >= A->n
*
* @param[in] beta
* beta specifies the scalar beta.
*
* @param[inout] C
* The matrix C of size ldc-by-n
*
* @param[in] ldc
* The leading dimension of the matrix C. ldc >= A->n
*
*******************************************************************************
*
* @retval SPM_SUCCESS if the y vector has been computed successfully,
* @retval SPM_ERR_BADPARAMETER otherwise.
*
*******************************************************************************/
int
z_spmCSCMatMat(const spm_trans_t trans,
spm_int_t n,
const void *alphaptr,
const spmatrix_t *A,
const void *Bptr,
spm_int_t ldb,
const void *betaptr,
void *Cptr,
spm_int_t ldc )
{
const spm_complex64_t *B = (const spm_complex64_t*)Bptr;
spm_complex64_t *C = (spm_complex64_t*)Cptr;
spm_complex64_t alpha, beta;
int i, rc = SPM_SUCCESS;
alpha = *((const spm_complex64_t *)alphaptr);
beta = *((const spm_complex64_t *)betaptr);
switch (A->mtxtype) {
#if defined(PRECISION_z) || defined(PRECISION_c)
case SpmHermitian:
for( i=0; i<n; i++ ){
rc = z_spmHeCSCv( alpha, A, B + i * ldb, beta, C + i *ldc );
}
break;
#endif
case SpmSymmetric:
for( i=0; i<n; i++ ){
rc = z_spmSyCSCv( alpha, A, B + i * ldb, beta, C + i *ldc );
}
break;
case SpmGeneral:
default:
for( i=0; i<n; i++ ){
rc = z_spmGeCSCv( trans, alpha, A, B + i * ldb, beta, C + i *ldc );
}
}
return rc;
}