Newer
Older

Mathieu Faverge
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* PaStiX CSC management routines.
*
* PaStiX is a software package provided by Inria Bordeaux - Sud-Ouest,
* LaBRI, University of Bordeaux 1 and IPB.
*
* @version 1.0.0
* @author Mathieu Faverge
* @author Pierre Ramet
* @author Xavier Lacoste
* @date 2011-11-11
* @precisions normal z -> c d s
*
**/
#include "common.h"
#include "z_csc_utils.h"
/* /\* */
/* Function: cmp_colrow */
/* Used for qsort to sort arrays of pastix_int_t following their first element. */
/* Returns the difference between the first element of *p1* and */
/* the first element of *p2* */
/* Parameters: */
/* p1 - the first array to compare */
/* p2 - the second array to compare */
/* *\/ */
/* int */
/* cmp_colrow(const void *p1, const void *p2) */
/* { */
/* return ((* (pastix_int_t * const *) p1) - (*(pastix_int_t * const *) p2)); */
/* } */
/*
Function: z_csc_symgraph
Modify the CSC to a symetric graph one.
Don't use it on a lower symetric CSC
it would give you all the CSC upper + lower.
External function.
Parameters:
n - Number of columns/vertices
ia - Starting index of each column in *ja* and *a*
ja - Row index of each element
a - Value of each element,can be NULL
newn - New number of column
newia - Starting index of each column in *ja* and *a*
newja - Row index of each element
newa - Value of each element,can be NULL
*/
int z_csc_symgraph( pastix_int_t n,
const pastix_int_t *ia,
const pastix_int_t *ja,
const pastix_complex64_t *a,
pastix_int_t *newn,
pastix_int_t **newia,
pastix_int_t **newja,
pastix_complex64_t **newa)
{
return z_csc_symgraph_int(n, ia, ja, a, newn, newia, newja, newa, API_NO);
}
/*
Function: csc_symgraph_int
Modify the CSC to a symetric graph one.
Don't use it on a lower symetric CSC
it would give you all the CSC upper + lower.
Parameters:
n - Number of columns/vertices
ia - Starting index of each column in *ja* and *a*
ja - Row index of each element
a - Value of each element,can be NULL
newn - New number of column
newia - Starting index of each column in *ja* and *a*
newja - Row index of each element
newa - Value of each element,can be NULL
malloc_flag - flag to indicate if function call is intern to pastix or extern.
*/
int z_csc_symgraph_int (pastix_int_t n,
const pastix_int_t *ia,
const pastix_int_t *ja,
const pastix_complex64_t *a,
pastix_int_t *newn,
pastix_int_t **newia,
pastix_int_t **newja,
pastix_complex64_t **newa,
int malloc_flag)
{
pastix_int_t * nbrEltCol = NULL; /* nbrEltCol[i] = Number of elt to add in column i */
pastix_int_t * cia = NULL; /* ia of diff between good CSC and bad CSC */
pastix_int_t * cja = NULL; /* ja of diff between good CSC and bad CSC */
pastix_int_t nbr2add; /* Number of elt to add */
pastix_int_t itercol, iterrow, iterrow2; /* iterators */
pastix_int_t l = ia[n] -1;
pastix_int_t newl;
/* Ncol=Nrow don't need change */
*newn = n;
MALLOC_INTERN(nbrEltCol, n, pastix_int_t);
/* !! Need check for malloc */
/* Init nbrEltCol */
for (itercol=0; itercol<n; itercol++)
{
nbrEltCol[itercol]=0;
}
/* Compute number of element by col to add for correcting the CSC */
for (itercol=0; itercol<n; itercol++)
{
for (iterrow=ia[itercol]-1; iterrow<ia[itercol+1]-1; iterrow++)
{
if (ja[iterrow] != (itercol+1))
{
/* Not diagonal elt */
/* So we have a (i,j) and we are looking for a (j,i) elt */
/* i = itercol+1, j=ja[iterrow] */
int rowidx=ja[iterrow]-1;
int flag=0;
for (iterrow2=ia[rowidx]-1; iterrow2<ia[rowidx+1]-1; iterrow2++)
{
if (ja[iterrow2] == itercol+1)
{
/* Ok we found (j,i) so stop this madness */
flag = 1;
break;
}
}
if (flag==0)
{
/* We never find (j,i) so increase nbrEltCol[j] */
(nbrEltCol[ja[iterrow]-1])++;
}
}
}
}
/* Compute number of element to add */
/* And cia=ia part of csc of element to add */
/* kind of a diff between the corrected one and the original CSC */
MALLOC_INTERN(cia, n+1, pastix_int_t);
/* !! Need checking good alloc) */
nbr2add=0;
for (itercol=0;itercol<n;itercol++)
{
cia[itercol]=nbr2add;
nbr2add += nbrEltCol[itercol];
}
cia[n]=nbr2add;
/*fprintf(stderr, "nbr of elt to add %ld\n", nbr2add);*/
if (nbr2add != 0)
{
/* Build cja */
/* like cia, cja is ja part of diff CSC */
MALLOC_INTERN(cja, nbr2add, pastix_int_t);
/* !! again we need check of memAlloc */
/* We walkthrough again the csc */
for (itercol=0;itercol<n;itercol++)
{
for (iterrow=ia[itercol]-1;iterrow<ia[itercol+1]-1;iterrow++)
{
if (ja[iterrow] != itercol+1)
{
/* we find (i,j) need to find (j,i) */
int rowidx=ja[iterrow]-1;
int flag=0;
for (iterrow2=ia[rowidx]-1;iterrow2<ia[rowidx+1]-1;iterrow2++)
{
if (ja[iterrow2] == itercol+1)
{
/* find (j,i) */
flag=1;
break;
}
}
if (flag==0)
{
/* We don't find (j,i) so put in diff CSC (cia,cja,0) */
pastix_int_t index=ja[iterrow]-1;
/* cia[index] = index to put in cja the elt */
cja[cia[index]] = itercol+1;
(cia[index])++;
}
}
}
}
/* Restore cia */
cia[0]=0;
for (itercol=0;itercol<n;itercol++)
{
cia[itercol+1]=cia[itercol]+nbrEltCol[itercol];
}
memFree_null(nbrEltCol);
/* Build corrected csc */
newl = l+nbr2add;
if (malloc_flag == API_NO)
{
/* Ici on a des malloc car le free est externe */
MALLOC_EXTERN(*newia, n+1, pastix_int_t);
MALLOC_EXTERN(*newja, newl, pastix_int_t);
if (a != NULL)
MALLOC_EXTERN(*newa, newl, pastix_complex64_t);
}
else
{
/* Ici on a des memAlloc car le free est interne */
MALLOC_INTERN(*newia, n+1, pastix_int_t);
MALLOC_INTERN(*newja, newl, pastix_int_t);
if (a != NULL)
MALLOC_INTERN(*newa, newl, pastix_complex64_t);
}
iterrow2 = 0; /* iterator of the CSC diff */
for (itercol=0; itercol<n; itercol++)
{
(*newia)[itercol] = ia[itercol]+iterrow2;
for (iterrow=ia[itercol]-1;iterrow<ia[itercol+1]-1;iterrow++)
{
/* we add the new elt with respect of order in row */
while ((iterrow2<cia[itercol+1]) &&
(ja[iterrow] > cja[iterrow2]))
{
/* we have elt(s) to add with a row lower than ja[iterrow] */
(*newja)[iterrow+iterrow2]=cja[iterrow2];
if (a != NULL)
(*newa)[iterrow+iterrow2]=0.;
iterrow2++;
}
/* Put the elt from the origin CSC */
(*newja)[iterrow+iterrow2] = ja[iterrow];
if (a != NULL)
(*newa)[iterrow+iterrow2] = a[iterrow];
}
/* Since we put elt with a row lower than elt in the origin CSC */
/* We could have some elt to add after the last elt in the column */
while(iterrow2<cia[itercol+1])
{
(*newja)[iterrow+iterrow2]=cja[iterrow2];
if (a != NULL)
(*newa)[iterrow+iterrow2]=0.;
iterrow2++;
}
}
(*newia)[n]=ia[n]+iterrow2;
memFree_null(cja);
}
else
{
/* No correction to do */
memFree_null(nbrEltCol);
newl = l;
if (malloc_flag == API_NO)
{
/* ici on a des mallocs car le free est externe */
MALLOC_EXTERN(*newia, n+1, pastix_int_t);
MALLOC_EXTERN(*newja, l, pastix_int_t);
if (a != NULL)
MALLOC_EXTERN(*newa, l, pastix_complex64_t);
}
else
{
/* ici on a des memAllocs car le free est interne */
MALLOC_INTERN(*newia, n+1, pastix_int_t);
MALLOC_INTERN(*newja, l, pastix_int_t);
if (a != NULL)
MALLOC_INTERN(*newa, l, pastix_complex64_t);
}
memcpy((*newia), ia, (n+1)*sizeof(pastix_int_t));
memcpy((*newja), ja, l * sizeof(pastix_int_t));
if (a != NULL)
memcpy((*newa) , a , l * sizeof(pastix_complex64_t));
}
memFree_null(cia);
return EXIT_SUCCESS;
}
/**
Function: z_csc_noDiag
Supress diagonal term.
After this call, *ja* can be reallocated to *ia[n] -1*.
Parameters:
n - size of the matrix.
ia - Index in *ja* and *a* of the first element of each column
ja - row of each element
a - value of each element, can be set to NULL
Returns:
ia and ja tabulars modified.
*/
void z_csc_noDiag(pastix_int_t baseval,
pastix_int_t n,
pastix_int_t *ia,
pastix_int_t *ja,
pastix_complex64_t *a)
{
pastix_int_t i, j;
pastix_int_t indj;
pastix_int_t *old_ia = NULL;
MALLOC_INTERN(old_ia, n+1, pastix_int_t);
memcpy(old_ia, ia, sizeof(pastix_int_t)*(n+1));
ASSERT(ia[0]==baseval,MOD_SOPALIN);
indj = 0;
/*fprintf(stdout, "NNZ with diag = %ld \n", ia[n]);*/
for(i=0;i<n;i++)
{
/* ia[i] = number of column already counted */
ia[i] = indj+baseval;
/* for each row number in each column i */
for(j=old_ia[i];j<old_ia[i+1];j++)
/* if element is not diagonal
we add it in ja and we count it */
if(ja[j-baseval] != i+baseval)
{
ja[indj] = ja[j-baseval];
if (a != NULL)
a[indj] = a [j -baseval];
indj++;
}
}
ia[n] = indj+baseval;
assert( ia[n] <= old_ia[n] );
/*fprintf(stdout, "NNZ without diag = %ld \n", ia[n]);*/
memFree_null(old_ia);
}
/*
Function: z_csc_check_doubles
Check if the csc contains doubles and if correct if asked
Assumes that the CSC is sorted.
Assumes that the CSC is Fortran numeroted (base 1)
Parameters:
n - Size of the matrix.
colptr - Index in *rows* and *values* of the first element of each column
rows - row of each element
values - value of each element (Can be NULL)
dof - Number of degrees of freedom
flag - Indicate if user wants correction (<API_BOOLEAN>)
flagalloc - indicate if allocation on CSC uses internal malloc.
Returns:
API_YES - If the matrix contained no double or was successfully corrected.
API_NO - Otherwise.
*/
int z_csc_check_doubles(pastix_int_t n,
pastix_int_t *colptr,
pastix_int_t **rowptr,
pastix_complex64_t **values,
int dof,
int flag,
int flagalloc)
{
pastix_int_t i,j,k,d;
int doubles = 0;
pastix_int_t * tmprows = NULL;
pastix_complex64_t * tmpvals = NULL;
pastix_int_t index = 0;
pastix_int_t lastindex = 0;
ASSERT(values == NULL || dof > 0, MOD_SOPALIN);
ASSERT(flag == API_NO || flag == API_YES, MOD_SOPALIN);
ASSERT(colptr[0] == 1, MOD_SOPALIN);
ASSERT(n >= 0, MOD_SOPALIN);
for (i = 0; i < n; i++)
{
for (j = colptr[i]-1; j < colptr[i+1]-1; j = k)
{
(*rowptr)[index] = (*rowptr)[j];
if (values != NULL)
for (d = 0; d < dof*dof; d++)
(*values)[index*dof*dof+d] = (*values)[j*dof*dof+d];
k = j+1;
while (k < colptr[i+1]-1 && (*rowptr)[j] == (*rowptr)[k])
{
if (flag == API_NO)
return API_NO;
if (values != NULL)
for (d = 0; d < dof*dof; d++)
(*values)[index*dof*dof+d] += (*values)[k*dof*dof+d];
doubles++;
k++;
}
index++;
}
colptr[i] = lastindex+1;
lastindex = index;
}
if (flag == API_NO)
return API_YES;
ASSERT(index == colptr[n]-1-doubles, MOD_SOPALIN);
if (doubles > 0)
{
colptr[n] = lastindex+1;
if (flagalloc == API_NO)
{
MALLOC_EXTERN(tmprows, lastindex, pastix_int_t);
if (values != NULL)
MALLOC_EXTERN(tmpvals, lastindex*dof*dof, pastix_complex64_t);
}
else
{
MALLOC_INTERN(tmprows, lastindex, pastix_int_t);
if (values != NULL)
MALLOC_INTERN(tmpvals, lastindex*dof*dof, pastix_complex64_t);
}
memcpy(tmprows, *rowptr, lastindex*sizeof(pastix_int_t));
if (values != NULL)
memcpy(tmpvals, *values, lastindex*dof*dof*sizeof(pastix_complex64_t));
if (flagalloc == API_NO)
{
free(*rowptr);
if (values != NULL)
free(*values);
}
else
{
memFree_null(*rowptr);
if (values != NULL)
memFree_null(*values);
}
*rowptr = tmprows;
if (values != NULL)
*values = tmpvals;
}
return API_YES;
}
/*
Function: z_csc_checksym
Check if the CSC graph is symetric.
For all local column C,
For all row R in the column C,
We look in column R if we have the row number C.
If we can correct we had missing non zeros.
Assumes that the CSC is Fortran numbered (1 based).
Assumes that the matrix is sorted.
Parameters:
n - Number of local columns
colptr - Starting index of each columns in *ja*
rows - Row of each element.
values - Value of each element.
correct - Flag indicating if we can correct the symmetry.
alloc - indicate if allocation on CSC uses internal malloc.
dof - Number of degrees of freedom.
*/
int z_csc_checksym(pastix_int_t n,
pastix_int_t *colptr,
pastix_int_t **rows,
pastix_complex64_t **values,
int correct,
int alloc,
int dof)
{
pastix_int_t i,j,k,l,d;
pastix_int_t index1;
pastix_int_t index2;
int found;
pastix_int_t toaddsize;
pastix_int_t toaddcnt;
pastix_int_t * toadd = NULL;
pastix_int_t * tmpcolptr = NULL;
pastix_int_t * tmprows = NULL;
pastix_complex64_t * tmpvals = NULL;
/* For all local column C,
For all row R in the column C,
If the row number R correspond to a local column,
We look in column R if we have the row number C.
Else,
*/
toaddcnt = 0;
toaddsize = 0;
for (i = 0; i < n; i++)
{
for (j = (colptr)[i]-1; j < (colptr)[i+1]-1; j++)
{
if ((*rows)[j] != i+1)
{
/* not in diagonal */
k = (*rows)[j];
found = 0;
for (l = (colptr)[k-1]-1; l < (colptr)[k-1+1]-1; l++)
{
if (i+1 == (*rows)[l])
{
found = 1;
break;
}
if (i+1 < (*rows)[l])
{
/* The CSC is sorted */
found = 0;
break;
}
}
if (found == 0)
{
if (correct == API_NO)
return EXIT_FAILURE;
else
{
if (toaddsize == 0)
{
toaddsize = n/2;
MALLOC_INTERN(toadd, 2*toaddsize, pastix_int_t);
}
if (toaddcnt >= toaddsize)
{
toaddsize += toaddsize/2 + 1;
if (NULL ==
(toadd =
(pastix_int_t*)memRealloc(toadd,
2*toaddsize*sizeof(pastix_int_t))))
MALLOC_ERROR("toadd");
}
toadd[2*toaddcnt] = (*rows)[j];
toadd[2*toaddcnt + 1] = i+1;
/* fprintf(stdout, "Adding %ld, %ld\n", (long)(i+1), (long)(*rows)[j]); */
toaddcnt++;
}
}
}
}
}
if (toaddcnt > 0)
{
intSort2asc1(toadd, toaddcnt);
/* Correct here is API_YES, otherwise we would have return EXIT_FAILURE
Or toaddcnt == 0*/
MALLOC_INTERN(tmpcolptr, n + 1, pastix_int_t);
if (alloc == API_NO)
{
MALLOC_EXTERN(tmprows, colptr[n]-1 + toaddcnt, pastix_int_t);
if (values != NULL)
{
MALLOC_EXTERN(tmpvals, colptr[n]-1 + toaddcnt, pastix_complex64_t);
}
}
else
{
MALLOC_INTERN(tmprows, colptr[n]-1 + toaddcnt, pastix_int_t);
if (values != NULL)
{
MALLOC_INTERN(tmpvals, colptr[n]-1 + toaddcnt, pastix_complex64_t);
}
}
/* Build tmpcolptr
tmpcolptr[i+1] will contain the number of element of
the column i
*/
index1 = 0;
index2 = 0;
for (i = 0; i < n; i++)
{
tmpcolptr[i] = index2+1;
for (j = colptr[i]-1; j < colptr[i+1]-1; j++)
{
if (index1 < toaddcnt &&
(toadd[2*index1] == i+1) &&
(toadd[2*index1+1] < (*rows)[j]))
{
tmprows[index2] = toadd[2*index1+1];
if (values != NULL)
{
for (d = 0; d < dof*dof ; d++)
tmpvals[index2*dof*dof+d] = 0.0;
}
index1++;
j--; /* hack do not increment j this step of the loop */
}
else
{
tmprows[index2] = (*rows)[j];
if (values != NULL)
{
for (d = 0; d < dof*dof ; d++)
tmpvals[index2*dof*dof+d] = (*values)[j*dof*dof+d];
}
}
index2++;
}
while(index1 < toaddcnt && toadd[2*index1] == i+1)
{
tmprows[index2] = toadd[2*index1+1];
if (values != NULL)
{
for (d = 0; d < dof*dof ; d++)
tmpvals[index2*dof*dof+d] = 0.0;
}
index1++;
index2++;
}
}
tmpcolptr[n] = index2+1;
ASSERT((tmpcolptr[n] - 1) == (colptr[n] - 1 + toaddcnt), MOD_SOPALIN);
memcpy(colptr, tmpcolptr, (n+1)*sizeof(pastix_int_t));
memFree_null(tmpcolptr);
memFree_null(toadd);
if (alloc == API_NO)
{
free(*rows);
if (values != NULL)
{
free(*values);
}
}
else
{
memFree_null(*rows);
if (values != NULL)
{
memFree_null(*values);
}
}
*rows = tmprows;
if (values != NULL)
{
*values = tmpvals;
}
}
return EXIT_SUCCESS;
}
/*
Function: z_csc_colPerm
Performs column permutation on a CSC
Parameters:
n - Size of the matrix.
ia - Index of first element of each column in *ia* and *a*
ja - Rows of non zeros of the matrix.
a - Values of non zeros of the matrix.
cperm - Permutation to perform
*/
void z_csc_colPerm(pastix_int_t n, pastix_int_t *ia, pastix_int_t *ja, pastix_complex64_t *a, pastix_int_t *cperm)
{
pastix_int_t i, k;
pastix_int_t *newja = NULL;
pastix_int_t *newia = NULL;
pastix_complex64_t *newa = NULL;
int numflag, numflag2;
numflag = ia[0];
numflag2 = 1;
for(i=0;i<n;i++)
if(cperm[i] == 0)
{
numflag2 = 0;
break;
}
if(numflag2 != numflag)
{
errorPrint("CSC_colPerm: rperm not in same numbering than the CSC.");
exit(-1);
}
if(numflag == 1)
{
z_csc_Fnum2Cnum(ja, ia, n);
for(i=0;i<n;i++)
cperm[i]--;
}
MALLOC_INTERN(newia, n+1, pastix_int_t);
MALLOC_INTERN(newja, ia[n], pastix_int_t);
MALLOC_INTERN(newa, ia[n], pastix_complex64_t);
newia[0] = 0;
for(i=0;i<n;i++)
{
#ifdef DEBUG_KASS
ASSERT(cperm[i]>=0 && cperm[i] < n, MOD_KASS);
#endif
newia[cperm[i]+1] = ia[i+1]-ia[i];
}
#ifdef DEBUG_KASS
for(i=1;i<=n;i++)
ASSERT(newia[i] >0, MOD_KASS);
#endif
for(i=1;i<=n;i++)
newia[i] += newia[i-1];
#ifdef DEBUG_KASS
ASSERT(newia[n] == ia[n], MOD_KASS);
#endif
for(i=0;i<n;i++)
{
k = cperm[i];
#ifdef DEBUG_KASS
ASSERT(newia[k+1]-newia[k] == ia[i+1]-ia[i], MOD_KASS);
#endif
memcpy(newja + newia[k], ja + ia[i], sizeof(pastix_int_t)*(ia[i+1]-ia[i]));
memcpy(newa + newia[k], a + ia[i], sizeof(pastix_complex64_t)*(ia[i+1]-ia[i]));
}
memcpy(ia, newia, sizeof(pastix_int_t)*(n+1));
memcpy(ja, newja, sizeof(pastix_int_t)*ia[n]);
memcpy(a, newa, sizeof(pastix_complex64_t)*ia[n]);
memFree(newia);
memFree(newja);
memFree(newa);
if(numflag == 1)
{
z_csc_Cnum2Fnum(ja, ia, n);
for(i=0;i<n;i++)
cperm[i]++;
}
}
/*
Function: z_csc_colScale
Moved from kass, only used in MC64
*/
void z_csc_colScale(pastix_int_t n,
pastix_int_t *ia,
pastix_int_t *ja,
pastix_complex64_t *a,
pastix_complex64_t *dcol)
{
pastix_int_t i, j;
int numflag;
pastix_complex64_t d;
numflag = ia[0];
if(numflag == 1)
z_csc_Fnum2Cnum(ja, ia, n);
for(i=0;i<n;i++)
{
d = dcol[i];
for(j=ia[i];j<ia[i+1];j++)
{
/***@@@ OIMBE DSCAL **/
a[j] *= d;
}
}
if(numflag == 1)
z_csc_Cnum2Fnum(ja, ia, n);
}
/*
Function: z_csc_rowScale
Moved from kass, only used in MC64
*/
void z_csc_rowScale(pastix_int_t n,
pastix_int_t *ia,
pastix_int_t *ja,
pastix_complex64_t *a,
pastix_complex64_t *drow)
{
pastix_int_t i, j;
int numflag;
numflag = ia[0];
if(numflag == 1)
z_csc_Fnum2Cnum(ja, ia, n);
for(i=0;i<n;i++)
{
for(j=ia[i];j<ia[i+1];j++)
{
#ifdef DEBUG_KASS
ASSERT(ja[j]>0 && ja[j] <n, MOD_KASS);
#endif
a[j] *= drow[ja[j]];
}
}
if(numflag == 1)
z_csc_Cnum2Fnum(ja, ia, n);
}
/*
* z_csc_sort:
*
* Sort CSC columns
*
* Parameters:
* n - Number of columns
* ia - Index of first element of each column in *ia*.
* ja - Rows of each non zeros.
* a - Values of each non zeros.
*/
void z_csc_sort(pastix_int_t n,
pastix_int_t *ia,
pastix_int_t *ja,
pastix_complex64_t *a,
pastix_int_t ndof)
{
pastix_int_t i;
int numflag;
pastix_int_t ndof2 = ndof * ndof;
void * sortptr[3];
numflag = ia[0];
if(numflag == 1)
z_csc_Fnum2Cnum(ja, ia, n);
if (a != NULL)
{
for(i=0;i<n;i++)
{
sortptr[0] = &ja[ia[i]];
sortptr[1] = &a[ia[i]*ndof2];
sortptr[2] = &ndof2;
z_qsortIntFloatAsc(sortptr, ia[i+1] - ia[i]);
}
}
else
{
for(i=0;i<n;i++)
intSort1asc1(&ja[ia[i]], ia[i+1] - ia[i]);
}
if(numflag == 1)
z_csc_Cnum2Fnum(ja, ia, n);
}
/*
Function: z_csc_Fnum2Cnum
Convert CSC numbering from fortran numbering to C numbering.
Parameters:
ja - Rows of each element.
ia - First index of each column in *ja*
n - Number of columns
*/
void z_csc_Fnum2Cnum(pastix_int_t *ja,
pastix_int_t *ia,
pastix_int_t n)
{
pastix_int_t i, j;
for(i=0;i<=n;i++)
ia[i]--;
for(i=0;i<n;i++)
for(j=ia[i];j<ia[i+1];j++)
ja[j]--;
}
/*
Function: z_csc_Cnum2Fnum
Convert CSC numbering from C numbering to Fortran numbering.
Parameters:
ja - Rows of each element.
ia - First index of each column in *ja*
n - Number of columns
*/
void z_csc_Cnum2Fnum(pastix_int_t *ja,
pastix_int_t *ia,
pastix_int_t n)
{
pastix_int_t i, j;
for(i=0;i<n;i++)
for(j=ia[i];j<ia[i+1];j++)
ja[j]++;
for(i=0;i<=n;i++)
ia[i]++;
}
/*
Function: z_csc_buildZerosAndNonZerosGraphs
Separate a graph in two graphs, following
wether the diagonal term of a column is null or not.
Parameters:
n, colptr, rows, values - The initial CSC
n_nz, colptr_nz, rows_nz - The graph of the non-null diagonal part.
n_z, colptr_z, rows_z - The graph of the null diagonal part.
perm - Permutation to go from the first graph to
the one composed of the two graph concatenated.
revperm - Reverse permutation tabular.
criteria - Value beside which a number is said null.
*/
int z_csc_buildZerosAndNonZerosGraphs(pastix_int_t n,
pastix_int_t *colptr,
pastix_int_t *rows,
pastix_complex64_t *values,
pastix_int_t *n_nz,
pastix_int_t **colptr_nz,
pastix_int_t **rows_nz,
pastix_int_t *n_z,
pastix_int_t **colptr_z,
pastix_int_t **rows_z,
pastix_int_t *perm,
pastix_int_t *revperm,
double criteria)
{
pastix_int_t itercol;
pastix_int_t iterrow;
pastix_int_t ncoefszeros = 0;
pastix_int_t ncoefsnzeros = 0;
pastix_int_t itercol_nz = 0;
pastix_int_t itercol_z = 0;
int seen;
pastix_int_t cntrows;
for (itercol = 0; itercol <n; itercol++)
{
seen = 0;
for (iterrow = colptr[itercol]-1; iterrow < colptr[itercol+1]-1; iterrow++)
{
if (itercol == rows[iterrow] -1 )
{
if (ABS_FLOAT(values[iterrow]) < criteria)
{
(*n_z) ++;
ncoefszeros += colptr[itercol+1] - colptr[itercol];
seen = 1;
}
else
{
(*n_nz) ++;
ncoefsnzeros += colptr[itercol+1] - colptr[itercol];
seen = 1;
}
break;
}
}
if (colptr[itercol+1] == colptr[itercol]) /* empty column */
{
(*n_z)++;