Parallel Sparse direct Solver

Name Last Update
bcsc Loading commit data...
blend Loading commit data...
cmake_modules Loading commit data...
common Loading commit data...
docs Loading commit data...
example Loading commit data...
graph Loading commit data...
include Loading commit data...
kernels Loading commit data...
order Loading commit data...
refinement Loading commit data...
sopalin Loading commit data...
spm Loading commit data...
symbol Loading commit data...
test Loading commit data...
wrappers Loading commit data...
.dir-locals.el Loading commit data...
.gitignore Loading commit data...
.gitlab-ci-env.sh Loading commit data...
.gitlab-ci.yml Loading commit data...
.gitmodules Loading commit data...
CMakeLists.txt Loading commit data...
CONTRIBUTING.md Loading commit data...
LICENSE Loading commit data...
LICENSE-fr Loading commit data...
README.md Loading commit data...
myversion.sh Loading commit data...
pastix.pc.in Loading commit data...
pastix_env.sh.in Loading commit data...
sonar-project.properties Loading commit data...

PaStiX: A sparse direct solver

PaStiX (Parallel Sparse matriX package) is a scientific library that provides a high performance parallel solver for very large sparse linear systems based on direct methods. Numerical algorithms are implemented in single or double precision (real or complex) using LLt, LDLt and LU with static pivoting (for non symmetric matrices having a symmetric pattern). This solver also provides some low-rank compression methods to reduce the memory footprint and/or the time-to-solution.

Get PaStiX

To use last development state of PaStiX, please clone the master branch. Note that PaStiX contains a git submodule morse_cmake. To get sources please use these commands:

# if git version >= 1.9
  git clone --recursive git@gitlab.inria.fr:solverstack/pastix.git
  cd pastix
# else
  git clone git@gitlab.inria.fr:solverstack/pastix.git
  cd pastix
  git submodule init
  git submodule update

Last releases of PaStiX are hosted on the gforge.inria.fr for now. Future releases will be available on this gitlab project.

Available Features

Seq Static Dyn StarPU PaRSEC
POTRF (Cholesky) SHM/LR SHM/LR SHM/LR SHM/GPU (LR coming) SHM/LR (GPU coming)
PXTRF (LLt for complex) Coming Coming Coming - Coming
HETRF (LDLh) Coming Coming Coming - -
SYTRF (LDLt) Coming Coming Coming - -
  • SHM means Shared Memory using POSIX theads for multicores architectures
  • LR means (block) Low-Rank compression technique to reduce the memory footprint and/or the time-to-solution
  • MPI is not available yet and will come with 6.1.0
  • StarPU support is not available yet, and should be available in final 6.0.0
  • GPUs kernels are in the code but not exploited yet, we are targeting for a simpler scheduling that would allow everyone to get correct performance out of the box in final 6.0.0


A temporary link to the Doxygen documentation. (we are waiting for availability of pages functionality in gitlab...)


Build and install with CMake

PaStiX can be built using CMake. This installation requires to have some library dependencies already installed on the system.

The main options to configure the PaStiX configuration build are:

  • Classic cmake options:
    • CMAKE_BUILD_TYPE: Debug, RelWithDebInfo, Release, MinSizeRel; we recommend to use the Release, or RelWithDebInfo, for performance.
    • CMAKE_INSTALL_PREFIX: Specify the prefix directory to install the library
    • BUILD_SHARED_LIBS=[OFF]: Enable the shared libraries build. This option needs to be enabled for the Python wrapper.
  • Integer type:
    • PASTIX_INT64[=ON]: Enable/disable int64_t for integer arrays.
  • Ordering libraries:
    • Ordering libraries must match the integer type chosen for integer arrays in PaStiX
    • PASTIX_ORDERING_SCOTCH[=ON]: Enable/Disable the support of the Scotch library to compute the ordering.
    • PASTIX_ORDERING_METIS[=OFF]: Enable/Disable the support of the Metis library to compute the ordering. Metis 5.1 is required.
  • External schedulers:
    • PASTIX_WITH_PARSEC[=OFF]: Enable/disable the PaRSEC runtime support. Require to install PaRSEC tag pastix-releasenumber (mymaster for master branch) from the repository https://bitbucket.org/mfaverge/parsec that includes a few patches on top of the original PaRSEC runtime system.
    • PASTIX_WITH_STARPU[=OFF]: Enable/disable the StarPU runtime support. Require to install StarPU 1.2. Not supported for now.
  • Distributed memory:
    • PASTIX_WITH_MPI=[OFF]: Distributed memory is not supported yet in PaStiX, however you might need to enable this option if your PaRSEC library has been compiled with MPI support.
  • Documentation:
    • BUILD_DOCUMENTATION[=OFF] to enable the Doxygen documentation generation

Get involved!

Reporting an issue

We strongly recommend all users to use the issue tracker to report any problems with the software, or for any feature request. We will try our best to answer them in a short time frame.




The following people contribute or contributed to the development of PaStiX:

  • Mathieu Faverge, PI
  • Pierre Ramet, PI
  • David Goudin
  • Mathias Hastaran
  • Pascal Henon
  • Xavier Lacoste
  • François Pellegrini
  • Grégoire Pichon, Low-rank solver
  • Florent Pruvost, CMake and Spack
  • Theophile Terraz

If we forgot your name, please let us know that we can fix that mistake.

Citing PaStiX

Feel free to use the following publications to reference PaStiX:

  • Original paper that initiated PaStiX:
    • Pascal Hénon, Pierre Ramet, Jean Roman. Pascal Hénon, Pierre Ramet, Jean Roman. PaStiX: A High-Performance Parallel Direct Solver for Sparse Symmetric Definite Systems. Parallel Computing, Elsevier, 2002, 28 (2), pp.301--321. INRIA HAL
  • Parallel incomplete factorization implemented in PaStiX:
    • Pascal Hénon, Pierre Ramet, Jean Roman. On finding approximate supernodes for an efficient ILU(k) factorization. Parallel Computing, Elsevier, 2008, 34, pp.345--362. INRIA HAL
  • Reordering strategy for blocking optimization in PaStiX:
    • Grégoire Pichon, Mathieu Faverge, Pierre Ramet, Jean Roman. Reordering Strategy for Blocking Optimization in Sparse Linear Solvers. SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2017, SIAM Journal on Matrix Analysis and Applications, 38 (1), pp.226 - 248. INRIA HAL
  • On the use of low rank approximations in PaStiX:
    • Grégoire Pichon, Eric Darve, Mathieu Faverge, Pierre Ramet, Jean Roman. Sparse Supernodal Solver Using Block Low-Rank Compression. 18th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC 2017), Jun 2017, Orlando, United States. INRIA HAL