Mentions légales du service

Skip to content
Snippets Groups Projects
Commit 3248158c authored by Simon Labarthe's avatar Simon Labarthe
Browse files

conflict resolved

parents d2a0d0dc ab8fdeea
No related branches found
No related tags found
No related merge requests found
Pipeline #1178731 passed with warnings
......@@ -32,6 +32,8 @@ check:
test:
stage: test
script:
- python3 -m pip install cmake --user
- python3 -m pip install swig --user
- tox -e clean,py38,report
artifacts:
reports:
......
......@@ -175,7 +175,7 @@ class Metamodel(object):
index_col=None,
exp=None,
metamodel_config=None,
relative_path='./',
relative_path="./",
):
self.kernel_type = kernel_type
self.bact = bact
......@@ -201,10 +201,11 @@ class Metamodel(object):
"selected_hyperparameters" in self.metamodel_yml.keys()
and "identity" in self.metamodel_yml["selected_hyperparameters"]
):
tmp_path=relative_path+self.metamodel_yml["selected_hyperparameters"]["identity"]
with open(
tmp_path, "r"
) as file: # Load the user parameter yml
tmp_path = (
relative_path
+ self.metamodel_yml["selected_hyperparameters"]["identity"]
)
with open(tmp_path, "r") as file: # Load the user parameter yml
identity = yaml.safe_load(file)
for spec in identity:
self.metamodel_yml[spec]["identity"] = identity[spec]
......@@ -239,14 +240,15 @@ class Metamodel(object):
]
self.C_learn = self.C_learn[col_subset]
self.constraint_ID_in_Y = np.array([self.exp.y_id(i) for i in col_subset])
if (self.metamodel_yml is not None
if (
self.metamodel_yml is not None
and "selected_hyperparameters" in self.metamodel_yml.keys()
and "identity" in self.metamodel_yml["selected_hyperparameters"]
):
self.constraint_Id_in_Y_identity = [
self.exp.y_id(comp)
for comp in self.metamodel_yml[self.bact]["identity"]
]
self.exp.y_id(comp)
for comp in self.metamodel_yml[self.bact]["identity"]
]
else:
self.constraint_ID_in_Y = np.arange(self.C_learn.shape[1])
self.substrate_metabolites = list(self.C_learn.columns)
......@@ -315,14 +317,15 @@ class Metamodel(object):
]
self.Flux_learn = self.Flux_learn[col_subset]
self.Flux_ID_in_Y = np.array([self.exp.y_id(i) for i in col_subset])
if (self.metamodel_yml is not None
if (
self.metamodel_yml is not None
and "selected_hyperparameters" in self.metamodel_yml.keys()
and "identity" in self.metamodel_yml["selected_hyperparameters"]
):
self.Flux_Id_in_output_identity = [
col_subset.index(comp)
for comp in self.metamodel_yml[self.bact]["identity"]
]
col_subset.index(comp)
for comp in self.metamodel_yml[self.bact]["identity"]
]
else:
self.Flux_ID_in_Y = np.arange(self.Flux_learn.shape[1])
self.compound_name = list(self.Flux_learn.columns)
......@@ -608,18 +611,26 @@ class Metamodel(object):
)
if self.Scaler_fluxes_flag != "None":
output = self.Scaler_fluxes.inverse_transform(output)
if (self.metamodel_yml is not None
if (
self.metamodel_yml is not None
and "selected_hyperparameters" in self.metamodel_yml.keys()
and "identity" in self.metamodel_yml["selected_hyperparameters"]
):
output[:,self.Flux_Id_in_output_identity] = c_in[:,self.constraint_Id_in_Y_identity]
output[:, self.Flux_Id_in_output_identity] = c_in[
:, self.constraint_Id_in_Y_identity
]
output = output.clip(
self.Clipping.data_min_,
self.Clipping.data_max_,
)
else:
output = 0.0
output_y0[:, self.Flux_ID_in_Y] = output
output_y0[:, self.Flux_ID_in_Y] = output
# clipping by constraint c_in since output cannot be lower than c_in input by definition of FBA constraints
# output_y0 is ordered as Y.
tmp_output_for_constraints = output_y0[:, self.constraint_ID_in_Y]
tmp_output_for_constraints = np.maximum(tmp_output_for_constraints, c)
output_y0[:, self.constraint_ID_in_Y] = tmp_output_for_constraints
return output_y0
def Gram_matrix_sqrt(self, eps=1e-8):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment