Mentions légales du service

Skip to content
Snippets Groups Projects
Commit bd3772c9 authored by KOPANAS Georgios's avatar KOPANAS Georgios
Browse files

CPU storage, GPU ad-hoc

parent f2171794
No related branches found
No related tags found
No related merge requests found
......@@ -59,12 +59,12 @@ class Camera(nn.Module):
self.FoVx = FoVx
self.FoVy = FoVy
self.original_image = image.clamp(0.0, 1.0).cuda()
self.original_image = image.clamp(0.0, 1.0)
if loaded_optimizedimages is not None:
self.image = nn.Parameter(loaded_optimizedimages.requires_grad_(True))
else:
image = image.clamp(0.0, 1.0)
self.image = nn.Parameter(image.cuda().requires_grad_(True))
self.image = nn.Parameter(image.requires_grad_(True))
self.image_width = self.image.shape[3]
self.image_height = self.image.shape[2]
......@@ -74,30 +74,30 @@ class Camera(nn.Module):
if loaded_expcoefs is not None:
self.exposure_coef = nn.Parameter(loaded_expcoefs.requires_grad_(True))
else:
self.exposure_coef = nn.Parameter(torch.ones(1, device="cuda").requires_grad_(True))
self.exposure_coef = nn.Parameter(torch.ones(1).requires_grad_(True))
if loaded_uncertainty is not None:
self.uncertainty_map = nn.Parameter(loaded_uncertainty.requires_grad_(True))
else:
self.uncertainty_map = nn.Parameter(0.5*torch.ones(self.image_height*self.image_width, 1, device="cuda").requires_grad_(True))
self.uncertainty_map = nn.Parameter(0.5*torch.ones(self.image_height*self.image_width, 1).requires_grad_(True))
if loaded_extrafeatures is not None:
self.extra_features = nn.Parameter(loaded_extrafeatures.requires_grad_(True))
else:
self.extra_features = nn.Parameter(torch.zeros(1, extra_features, self.image_height, self.image_width, device="cuda").requires_grad_(True))
self.extra_features = nn.Parameter(torch.zeros(1, extra_features, self.image_height, self.image_width).requires_grad_(True))
self.point_grid = getNormalisedImageGrid(self.image_height, self.image_width).cuda()
self.point_grid = getNormalisedImageGrid(self.image_height, self.image_width)
self.depth_map = loaded_depthmap.cuda()
self.depth_map = loaded_depthmap
if loaded_depthdelta is not None:
self.depth_delta = nn.Parameter(loaded_depthdelta.requires_grad_(True))
else:
self.depth_delta = nn.Parameter(torch.zeros_like(self.depth_map, device="cuda").requires_grad_(True))
self.depth_delta = nn.Parameter(torch.zeros_like(self.depth_map).requires_grad_(True))
if loaded_normaldelta is not None:
self.normal_map = nn.Parameter(loaded_normaldelta.cuda().requires_grad_(True))
self.normal_map = nn.Parameter(loaded_normaldelta.requires_grad_(True))
else:
self.normal_map = nn.Parameter(loaded_normalmap.cuda().requires_grad_(True))
self.normal_map = nn.Parameter(loaded_normalmap.requires_grad_(True))
self.zfar = self.getDepth().max()*2.0
try:
......
......@@ -93,10 +93,10 @@ with torch.no_grad():
with open(args.input_path) as json_file:
input_json = json.load(json_file)
input_json["neural_weights_folder"] = "/data/graphdeco/user/gkopanas/pointbased_neural_rendering/pbnr_pytorch/tensorboard_3d/" + dataset_name + "_final/neural_renderer"
input_json["scenes"][0]["scene_representation_folder"] = "/data/graphdeco/user/gkopanas/pointbased_neural_rendering/pbnr_pytorch/tensorboard_3d/" + dataset_name + "_final/" + dataset_name
input_json["neural_weights_folder"] = "/data/graphdeco/user/gkopanas/pointbased_neural_rendering/pbnr_pytorch/tensorboard_3d/" + dataset_name + "_final2/neural_renderer"
input_json["scenes"][0]["scene_representation_folder"] = "/data/graphdeco/user/gkopanas/pointbased_neural_rendering/pbnr_pytorch/tensorboard_3d/" + dataset_name + "_final2/" + dataset_name
for load_iter in [20000, 40000, 60000, 80000, 100000]:
for load_iter in [100000]:
print("Load Iter {}:".format(load_iter))
neural_renderer = torch.jit.load(os.path.join(input_json.get("neural_weights_folder"), "model_" + str(load_iter)))
......@@ -104,7 +104,7 @@ with torch.no_grad():
args.max_radius, args.extra_features,
int(args.test_cameras), load_iter)
output = "/data/graphdeco/user/gkopanas/pointbased_neural_rendering/pbnr_pytorch/tensorboard_3d/" + dataset_name + "_final/backlisted_renders_{}_{}_".format(args.w, args.h) + str(load_iter)
output = "/data/graphdeco/user/gkopanas/pointbased_neural_rendering/pbnr_pytorch/tensorboard_3d/" + dataset_name + "_final2/backlisted_renders_{}_{}_".format(args.w, args.h) + str(load_iter)
makedirs(output, exist_ok=True)
imgs = torch.tensor([])
......@@ -120,11 +120,11 @@ with torch.no_grad():
torchvision.utils.save_image(view_cam.image,
os.path.join(output, "gt_{}.png".format(view_cam.image_name)))
imgs = torch.cat((imgs, image.cpu()), dim=0)
gts = torch.cat((gts, view_cam.image), dim=0)
gts = torch.cat((gts, view_cam.image.cpu()), dim=0)
num_psnr = psnr(imgs, gts)
print(num_psnr)
f = open(os.path.join(output, "psnr.txt"), "w")
f.write("PSNR: {}".format(num_psnr))
f.close()
#num_psnr = psnr(imgs, gts)
#print(num_psnr)
#f = open(os.path.join(output, "psnr.txt"), "w")
#f.write("PSNR: {}".format(num_psnr))
#f.close()
......@@ -50,7 +50,7 @@ def render_viewpoint(viewpoint_camera, pcloud_cameras, patch=None, gamma=1.0):
features_stack = torch.cat((features_stack, rendered_point_cloud), dim=0)
depth_gmms_stack = torch.cat((depth_gmms_stack, depth_gmms), dim=0)
num_gmms_stack = torch.cat((num_gmms_stack, num_gmms.int()), dim=0)
l2_stack = torch.cat((l2_stack, torch.nn.functional.mse_loss(rendered_point_cloud[:,:3,:,:], crop_image(viewpoint_camera.image, patch)*blend_scores).unsqueeze(0)), dim=0)
l2_stack = torch.cat((l2_stack, torch.nn.functional.mse_loss(rendered_point_cloud[:,:3,:,:], crop_image(viewpoint_camera.image, patch).cuda()*blend_scores).unsqueeze(0)), dim=0)
color_stack = color_stack.view(color_stack.shape[0], -1, 3, color_stack.shape[2], color_stack.shape[3])
with torch.no_grad():
......@@ -207,7 +207,7 @@ while True:
with torch.no_grad():
if not viewpoint_stack:
viewpoint_stack = scene.getAllTrainCameras().copy()
if iteration%10000==0:
if iteration%20000==0:
print("[ITER {}]Saving Model...".format(iteration))
mkdir_p("./{}/neural_renderer/".format(tensorboard_folder))
neural_renderer.save("./{}/neural_renderer/model_{}".format(tensorboard_folder, iteration))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment