Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import math
import torch
from spherical_models.compression_models import SphereCompressionModel
from spherical_models import SphereGaussianConditional
from compressai.models.utils import update_registered_buffers
from spherical_models import SLB_Downsample, SLB_Upsample
import numpy as np
# From Balle's tensorflow compression examples
SCALES_MIN = 0.11
SCALES_MAX = 256
SCALES_LEVELS = 64
def get_scale_table(min=SCALES_MIN, max=SCALES_MAX, levels=SCALES_LEVELS): # pylint: disable=W0622
return torch.exp(torch.linspace(math.log(min), math.log(max), levels))
class SphereScaleHyperprior(SphereCompressionModel):
r"""Scale Hyperprior model for spherical data.
Args:
N (int): Number of channels
M (int): Number of channels in the expansion layers (last layer of the
encoder and last layer of the hyperprior decoder)
"""
def __init__(self, N, M, conv_name, skip_conn_aggr, pool_func, unpool_func, **kwargs):
super().__init__(entropy_bottleneck_channels=N, **kwargs)
####################### g_a #######################
self.g_a = torch.nn.ModuleList()
self.g_a.append(SLB_Downsample(conv_name, 3, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="GDN",
pool_func=pool_func, pool_size_sqrt=2))
self.g_a.append(SLB_Downsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="GDN",
pool_func=pool_func, pool_size_sqrt=2))
self.g_a.append(SLB_Downsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="GDN",
pool_func=pool_func, pool_size_sqrt=2))
# For the last layer there is no GDN anymore:
self.g_a.append(SLB_Downsample(conv_name, N, M, hop=2, skip_conn_aggr=skip_conn_aggr,
pool_func=pool_func, pool_size_sqrt=2))
####################### g_s #######################
self.g_s = torch.nn.ModuleList()
self.g_s.append(SLB_Upsample(conv_name, M, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="GDN", activation_args={"inverse":True},
unpool_func=unpool_func, unpool_size_sqrt=2))
self.g_s.append(SLB_Upsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="GDN", activation_args={"inverse": True},
unpool_func=unpool_func, unpool_size_sqrt=2))
self.g_s.append(SLB_Upsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="GDN", activation_args={"inverse": True},
unpool_func=unpool_func, unpool_size_sqrt=2))
# For the last layer there is no GDN anymore:
self.g_s.append(SLB_Upsample(conv_name, N, 3, hop=2, skip_conn_aggr=skip_conn_aggr,
unpool_func=unpool_func, unpool_size_sqrt=2))
####################### h_a #######################
self.h_a = torch.nn.ModuleList()
# effective hop=1 => num_conv = 1, and there is no downsampling
self.h_a.append(SLB_Downsample(conv_name, M, N, hop=1, skip_conn_aggr=None,
activation="ReLU", activation_args={"inplace": True}))
self.h_a.append(SLB_Downsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="ReLU", activation_args={"inplace": True},
pool_func=pool_func, pool_size_sqrt=2))
# For the last layer there is no ReLu anymore:
self.h_a.append(SLB_Downsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
pool_func=pool_func, pool_size_sqrt=2))
####################### h_s #######################
self.h_s = torch.nn.ModuleList()
self.h_s.append(SLB_Upsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="ReLU", activation_args={"inplace": True},
unpool_func=unpool_func, unpool_size_sqrt=2))
self.h_s.append(SLB_Upsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="ReLU", activation_args={"inplace": True},
unpool_func=unpool_func, unpool_size_sqrt=2))
# effective hop=1 => num_conv = 1, and there is no Upsampling
self.h_s.append(SLB_Upsample(conv_name, N, M, hop=1, skip_conn_aggr=None,
activation="ReLU", activation_args={"inplace": True}))
###################################################
self.gaussian_conditional = SphereGaussianConditional(None)
self.N = int(N)
self.M = int(M)
self._computeResOffset()
def _computeResOffset(self):
# compute convolution resolution offset
g_a_output = list(np.cumsum([layerBlock.get_output_res_offset() for layerBlock in self.g_a]))
self._g_a_offset = [self.g_a[0].get_conv_input_res_offset()]
self._g_a_offset.extend([self.g_a[i].get_conv_input_res_offset()+g_a_output[i-1] for i in range(1, len(self.g_a))])
h_a_output = list(np.cumsum([layerBlock.get_output_res_offset() for layerBlock in self.h_a]))
h_a_output = [res+g_a_output[-1] for res in h_a_output]
self._h_a_offset = [self.h_a[0].get_conv_input_res_offset() + g_a_output[-1]]
self._h_a_offset.extend([self.h_a[i].get_conv_input_res_offset()+h_a_output[i-1] for i in range(1, len(self.h_a))])
h_s_output = list(np.cumsum([layerBlock.get_output_res_offset() for layerBlock in self.h_s]))
h_s_output = [res+h_a_output[-1] for res in h_s_output]
self._h_s_offset = [self.h_s[0].get_conv_input_res_offset()+h_a_output[-1]]
self._h_s_offset.extend([self.h_s[i].get_conv_input_res_offset() + h_s_output[i - 1] for i in range(1, len(self.h_s))])
assert h_s_output[-1] == g_a_output[-1], "resolutions do not match"
g_s_output = list(np.cumsum([layerBlock.get_output_res_offset() for layerBlock in self.g_s]))
g_s_output = [res + g_a_output[-1] for res in g_s_output]
self._g_s_offset = [self.g_s[0].get_conv_input_res_offset() + g_a_output[-1]]
self._g_s_offset.extend([self.g_s[i].get_conv_input_res_offset() + g_s_output[i - 1] for i in range(1, len(self.g_s))])
def get_resOffset(self):
return set(self._g_a_offset + self._h_a_offset + self._h_s_offset + self._g_s_offset)
def forward(self, x, dict_index, dict_weight, res, patch_res=None, dict_valid_index=None): # x is a tensor of size [batch_size, num_nodes, num_features]
data_res = res if patch_res is None else (res, patch_res)
########### apply g_a ###########
y = x
for i in range(len(self.g_a)):
conv_res = type(data_res)(np.add(data_res, self._g_a_offset[i]))
y = self.g_a[i](y, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
# print("applying g_a")
# print("y.mean()=", y.mean(), "x.mean()=", x.mean())
# print("y.max()=", y.max(), "y.min()=", y.min())
# print("x.max()=", x.max(), "x.min()=", x.min())
########### apply h_a ###########
z = torch.abs(y)
for i in range(len(self.h_a)):
conv_res = type(data_res)(np.add(data_res, self._h_a_offset[i]))
z = self.h_a[i](z, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
# print("applying h_a")
# print("z.mean()=", z.mean(), "torch.abs(y).mean()=", torch.abs(y).mean())
# print("z.max()=", z.max(), "z.min()=", z.min())
# print("torch.abs(y).max()=", torch.abs(y).max(), "torch.abs(y).min()=", torch.abs(y).min())
z_hat, z_likelihoods = self.entropy_bottleneck(z)
########### apply h_s ###########
scales_hat = z_hat
for i in range(len(self.h_s)):
conv_res = type(data_res)(np.add(data_res, self._h_s_offset[i]))
scales_hat = self.h_s[i](scales_hat, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
# print("applying h_s")
# print("scales_hat.mean()=", scales_hat.mean(), "z_hat.mean()=", z_hat.mean())
# print("scales_hat.max()=", scales_hat.max(), "scales_hat.min()=", scales_hat.min())
# print("z_hat.max()=", z_hat.max(), "z_hat.min()=", z_hat.min())
y_hat, y_likelihoods = self.gaussian_conditional(y, scales_hat)
########### apply g_s ###########
x_hat = y_hat
for i in range(len(self.g_s)):
conv_res = type(data_res)(np.add(data_res, self._g_s_offset[i]))
x_hat = self.g_s[i](x_hat, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
# print("applying g_s")
# print("x_hat.mean()=", x_hat.mean(), "y_hat.mean()=", y_hat.mean())
# print("x_hat.max()=", x_hat.max(), "x_hat.min()=", x_hat.min())
# print("y_hat.max()=", y_hat.max(), "y_hat.min()=", y_hat.min())
# with torch.no_grad():
# print("input/out mean ratio=", x.mean()/x_hat.mean())
return {
'x_hat': x_hat,
'likelihoods': {
'y': y_likelihoods,
'z': z_likelihoods
},
}
def load_state_dict(self, state_dict):
update_registered_buffers(
self.gaussian_conditional, "gaussian_conditional",
["_quantized_cdf", "_offset", "_cdf_length", "scale_table"],
state_dict)
super().load_state_dict(state_dict)
def update(self, scale_table=None, force=False):
if scale_table is None:
scale_table = get_scale_table()
updated = self.gaussian_conditional.update_scale_table(scale_table, force=force)
updated |= super().update(force=force)
return updated
def compress(self, x, dict_index, dict_weight, res, patch_res=None, dict_valid_index=None):
data_res = res if patch_res is None else (res, patch_res)
########### apply g_a ###########
y = x
for i in range(len(self.g_a)):
conv_res = type(data_res)(np.add(data_res, self._g_a_offset[i]))
y = self.g_a[i](y, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
########### apply h_a ###########
z = torch.abs(y)
for i in range(len(self.h_a)):
conv_res = type(data_res)(np.add(data_res, self._h_a_offset[i]))
z = self.h_a[i](z, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
z_strings = self.entropy_bottleneck.compress(z)
z_hat = self.entropy_bottleneck.decompress(z_strings, z.size()[1])
########### apply h_s ###########
scales_hat = z_hat
for i in range(len(self.h_s)):
conv_res = type(data_res)(np.add(data_res, self._h_s_offset[i]))
scales_hat = self.h_s[i](scales_hat, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
indexes = self.gaussian_conditional.build_indexes(scales_hat)
y_strings = self.gaussian_conditional.compress(y, indexes)
return {"strings": [y_strings, z_strings], "shape": z.size()[1]}
def decompress(self, strings, shape, dict_index, dict_weight, res, patch_res=None, dict_valid_index=None):
assert isinstance(strings, list) and len(strings) == 2
z_hat = self.entropy_bottleneck.decompress(strings[1], shape)
data_res = res if patch_res is None else (res, patch_res)
########### apply h_s ###########
scales_hat = z_hat
for i in range(len(self.h_s)):
conv_res = type(data_res)(np.add(data_res, self._h_s_offset[i]))
scales_hat = self.h_s[i](scales_hat, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
indexes = self.gaussian_conditional.build_indexes(scales_hat)
y_hat = self.gaussian_conditional.decompress(strings[0], indexes)
########### apply g_s ###########
x_hat = y_hat
for i in range(len(self.g_s)):
conv_res = type(data_res)(np.add(data_res, self._g_s_offset[i]))
x_hat = self.g_s[i](x_hat, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
x_hat = x_hat.clamp_(0, 1)
return {"x_hat": x_hat}
if __name__ == '__main__':
ssh = SphereScaleHyperprior(128, 192, "SDPAConv", "sum", "max_pool", "nearest")
print(ssh.get_resOffset())