Newer
Older
import math
import torch
from spherical_models.compression_models import SphereCompressionModel
from spherical_models import SphereGaussianConditional
from compressai.models.utils import update_registered_buffers
from compressai.ans import BufferedRansEncoder, RansDecoder
from spherical_models import SLB_Downsample, SLB_Upsample
# From Balle's tensorflow compression examples
SCALES_MIN = 0.11
SCALES_MAX = 256
SCALES_LEVELS = 64
def get_scale_table(min=SCALES_MIN, max=SCALES_MAX, levels=SCALES_LEVELS): # pylint: disable=W0622
return torch.exp(torch.linspace(math.log(min), math.log(max), levels))
class SphereScaleHyperprior(SphereCompressionModel):
r"""Scale Hyperprior model for spherical data.
Args:
N (int): Number of channels
M (int): Number of channels in the expansion layers (last layer of the
encoder and last layer of the hyperprior decoder)
"""
def __init__(self, N, M, conv_name, skip_conn_aggr, pool_func, unpool_func, attention:bool=False, activation:str='GDN', context_model:str='', **kwargs):
####################### g_a #######################
self.g_a = torch.nn.ModuleList()
self.g_a.append(SLB_Downsample(conv_name, 3, N, hop=2, skip_conn_aggr=skip_conn_aggr,
pool_func=pool_func, pool_size_sqrt=2))
self.g_a.append(SLB_Downsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
pool_func=pool_func, pool_size_sqrt=2, attention_pos=a_pos))
self.g_a.append(SLB_Downsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
pool_func=pool_func, pool_size_sqrt=2))
# For the last layer there is no GDN anymore:
self.g_a.append(SLB_Downsample(conv_name, N, M, hop=2, skip_conn_aggr=skip_conn_aggr,
pool_func=pool_func, pool_size_sqrt=2, attention_pos=a_pos))
####################### g_s #######################
self.g_s = torch.nn.ModuleList()
self.g_s.append(SLB_Upsample(conv_name, M, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation=activation, activation_args={"inverse":True},
unpool_func=unpool_func, unpool_size_sqrt=2, attention_pos=a_pos))
a_pos = (2 if attention else -1)
self.g_s.append(SLB_Upsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation=activation, activation_args={"inverse": True},
unpool_func=unpool_func, unpool_size_sqrt=2, attention_pos=a_pos))
self.g_s.append(SLB_Upsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation=activation, activation_args={"inverse": True},
unpool_func=unpool_func, unpool_size_sqrt=2))
# For the last layer there is no GDN anymore:
self.g_s.append(SLB_Upsample(conv_name, N, 3, hop=2, skip_conn_aggr=skip_conn_aggr,
unpool_func=unpool_func, unpool_size_sqrt=2))
####################### h_a #######################
self.h_a = torch.nn.ModuleList()
# effective hop=1 => num_conv = 1, and there is no downsampling
self.h_a.append(SLB_Downsample(conv_name, M, N, hop=1, skip_conn_aggr=None,
activation="ReLU", activation_args={"inplace": True}))
self.h_a.append(SLB_Downsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="ReLU", activation_args={"inplace": True},
pool_func=pool_func, pool_size_sqrt=2))
# For the last layer there is no ReLu anymore:
self.h_a.append(SLB_Downsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
pool_func=pool_func, pool_size_sqrt=2))
####################### h_s #######################
self.h_s = torch.nn.ModuleList()
self.h_s.append(SLB_Upsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="ReLU", activation_args={"inplace": True},
unpool_func=unpool_func, unpool_size_sqrt=2))
self.h_s.append(SLB_Upsample(conv_name, N, N, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="ReLU", activation_args={"inplace": True},
unpool_func=unpool_func, unpool_size_sqrt=2))
# effective hop=1 => num_conv = 1, and there is no Upsampling
self.h_s.append(SLB_Upsample(conv_name, N, M, hop=1, skip_conn_aggr=None,
activation="ReLU", activation_args={"inplace": True}))
################## Context Model ##################
self.context_model = context_model
if context_model:
self.autoregressive = SLB_Downsample(conv_name, M, M, hop=2, skip_conn_aggr=skip_conn_aggr,
activation="ReLU", activation_args={"inplace": True}, mask=mask)
self.combine_ar_hp = torch.nn.Sequential(
SLB_Downsample('SDPAConv', 2*M, M+256, hop=1, skip_conn_aggr=skip_conn_aggr,
activation="ReLU", activation_args={"inplace": True}, conv1x1=True),
SLB_Downsample('SDPAConv', M+256, M+128, hop=1, skip_conn_aggr=skip_conn_aggr,
activation="ReLU", activation_args={"inplace": True}, conv1x1=True),
SLB_Downsample('SDPAConv', M+128, M, hop=1, skip_conn_aggr=skip_conn_aggr, conv1x1=True)
)
###################################################
self.gaussian_conditional = SphereGaussianConditional(None)
self.N = int(N)
self.M = int(M)
self._computeResOffset()
def _computeResOffset(self):
# compute convolution resolution offset
g_a_output = list(np.cumsum([layerBlock.get_output_res_offset() for layerBlock in self.g_a]))
self._g_a_offset = [self.g_a[0].get_conv_input_res_offset()]
self._g_a_offset.extend([self.g_a[i].get_conv_input_res_offset() + g_a_output[i-1] for i in range(1, len(self.g_a))])
h_a_output = list(np.cumsum([layerBlock.get_output_res_offset() for layerBlock in self.h_a]))
h_a_output = [res+g_a_output[-1] for res in h_a_output]
self._h_a_offset = [self.h_a[0].get_conv_input_res_offset() + g_a_output[-1]]
self._h_a_offset.extend([self.h_a[i].get_conv_input_res_offset() + h_a_output[i-1] for i in range(1, len(self.h_a))])
h_s_output = list(np.cumsum([layerBlock.get_output_res_offset() for layerBlock in self.h_s]))
h_s_output = [res+h_a_output[-1] for res in h_s_output]
self._h_s_offset = [self.h_s[0].get_conv_input_res_offset() + h_a_output[-1]]
self._h_s_offset.extend([self.h_s[i].get_conv_input_res_offset() + h_s_output[i-1] for i in range(1, len(self.h_s))])
assert h_s_output[-1] == g_a_output[-1], "resolutions do not match"
g_s_output = list(np.cumsum([layerBlock.get_output_res_offset() for layerBlock in self.g_s]))
g_s_output = [res+g_a_output[-1] for res in g_s_output]
self._g_s_offset = [self.g_s[0].get_conv_input_res_offset() + g_a_output[-1]]
self._g_s_offset.extend([self.g_s[i].get_conv_input_res_offset() + g_s_output[i-1] for i in range(1, len(self.g_s))])
def get_resOffset(self):
return set(self._g_a_offset + self._h_a_offset + self._h_s_offset + self._g_s_offset)
def forward(self, x, dict_index, dict_weight, res, patch_res=None, dict_valid_index=None): # x is a tensor of size [batch_size, num_nodes, num_features]
data_res = res if patch_res is None else (res, patch_res)
########### apply g_a ###########
y = x
for i in range(len(self.g_a)):
conv_res = type(data_res)(np.add(data_res, self._g_a_offset[i]))
if (self.activation.upper()=='RB') or (self.attention and (self.g_a[i].attention_pos > 0)): # for attention after convolution or RBs as nonlinearity
conv_res_ = type(data_res)(np.add(data_res, self._g_a_offset[i+1] if i<(len(self.g_a)-1) else self._g_s_offset[0]))
index_, weight_, valid_index_ = dict_index[conv_res_], dict_weight[conv_res_], dict_valid_index[conv_res_] if dict_valid_index is not None else None
else:
index_, weight_, valid_index_ = None, None, None
y = self.g_a[i](y, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None,
index_=index_, weight_=weight_, valid_index_=valid_index_)
# print("applying g_a")
# print("y.mean()=", y.mean(), "x.mean()=", x.mean())
# print("y.max()=", y.max(), "y.min()=", y.min())
# print("x.max()=", x.max(), "x.min()=", x.min())
########### apply h_a ###########
z = torch.abs(y)
for i in range(len(self.h_a)):
conv_res = type(data_res)(np.add(data_res, self._h_a_offset[i]))
z = self.h_a[i](z, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
# print("applying h_a")
# print("z.mean()=", z.mean(), "torch.abs(y).mean()=", torch.abs(y).mean())
# print("z.max()=", z.max(), "z.min()=", z.min())
# print("torch.abs(y).max()=", torch.abs(y).max(), "torch.abs(y).min()=", torch.abs(y).min())
z_hat, z_likelihoods = self.entropy_bottleneck(z)
########### apply h_s ###########
scales_hat = z_hat
for i in range(len(self.h_s)):
conv_res = type(data_res)(np.add(data_res, self._h_s_offset[i]))
scales_hat = self.h_s[i](scales_hat, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
# print("applying h_s")
# print("scales_hat.mean()=", scales_hat.mean(), "z_hat.mean()=", z_hat.mean())
# print("scales_hat.max()=", scales_hat.max(), "scales_hat.min()=", scales_hat.min())
# print("z_hat.max()=", z_hat.max(), "z_hat.min()=", z_hat.min())
skip_quant = bool(self.context_model)
if skip_quant: # take quantization out of self.gaussian_conditional.forward()
y_hat = self.gaussian_conditional.quantize(y, 'noise' if self.gaussian_conditional.training else 'dequantize', means=None) # TODO add mean if needed
conv_res = type(data_res)(np.add(data_res, self._g_s_offset[0]))
phi_sp = self.autoregressive(y_hat, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
scales_hat = self.combine_ar_hp(torch.cat([scales_hat, phi_sp], dim=-1))
# TODO meanHyperprior: scales_hat, means_hat = scales_hat.chunk(2, -1)
y_hat, y_likelihoods = self.gaussian_conditional(y if not skip_quant else y_hat, scales_hat, skip_quant=skip_quant)
########### apply g_s ###########
x_hat = y_hat
for i in range(len(self.g_s)):
conv_res = type(data_res)(np.add(data_res, self._g_s_offset[i]))
if (self.activation.upper()=='RB') or (self.attention and (self.g_s[i].attention_pos > 0)): # for attention after convolution
conv_res_ = type(data_res)(np.add(data_res, self._g_s_offset[i+1] if i<(len(self.g_s)-1) else self._g_a_offset[0]))
index_, weight_, valid_index_ = dict_index[conv_res_], dict_weight[conv_res_], dict_valid_index[conv_res_] if dict_valid_index is not None else None
else:
index_, weight_, valid_index_ = None, None, None
x_hat = self.g_s[i](x_hat, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None,
index_=index_, weight_=weight_, valid_index_=valid_index_)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# print("applying g_s")
# print("x_hat.mean()=", x_hat.mean(), "y_hat.mean()=", y_hat.mean())
# print("x_hat.max()=", x_hat.max(), "x_hat.min()=", x_hat.min())
# print("y_hat.max()=", y_hat.max(), "y_hat.min()=", y_hat.min())
# with torch.no_grad():
# print("input/out mean ratio=", x.mean()/x_hat.mean())
return {
'x_hat': x_hat,
'likelihoods': {
'y': y_likelihoods,
'z': z_likelihoods
},
}
def load_state_dict(self, state_dict):
update_registered_buffers(
self.gaussian_conditional, "gaussian_conditional",
["_quantized_cdf", "_offset", "_cdf_length", "scale_table"],
state_dict)
super().load_state_dict(state_dict)
def update(self, scale_table=None, force=False):
if scale_table is None:
scale_table = get_scale_table()
updated = self.gaussian_conditional.update_scale_table(scale_table, force=force)
updated |= super().update(force=force)
return updated
def compress(self, x, dict_index, dict_weight, res, patch_res=None, dict_valid_index=None):
if self.context_model:
if next(self.parameters()).device != torch.device("cpu"):
warnings.warn(
"Inference on GPU is not recommended for the autoregressive "
"models (the entropy coder is run sequentially on CPU).",
stacklevel=2)
data_res = res if patch_res is None else (res, patch_res)
########### apply g_a ###########
y = x
for i in range(len(self.g_a)):
conv_res = type(data_res)(np.add(data_res, self._g_a_offset[i]))
if (self.activation.upper()=='RB') or (self.attention and (self.g_a[i].attention_pos > 0)):
conv_res_ = type(data_res)(np.add(data_res, self._g_a_offset[i+1] if i<(len(self.g_a)-1) else self._g_s_offset[0]))
index_, weight_, valid_index_ = dict_index[conv_res_], dict_weight[conv_res_], dict_valid_index[conv_res_] if dict_valid_index is not None else None
else:
index_, weight_, valid_index_ = None, None, None
y = self.g_a[i](y, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None,
index_=index_, weight_=weight_, valid_index_=valid_index_)
########### apply h_a ###########
z = torch.abs(y)
for i in range(len(self.h_a)):
conv_res = type(data_res)(np.add(data_res, self._h_a_offset[i]))
z = self.h_a[i](z, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
z_strings = self.entropy_bottleneck.compress(z)
z_hat = self.entropy_bottleneck.decompress(z_strings, z.size()[1])
########### apply h_s ###########
scales_hat = z_hat
for i in range(len(self.h_s)):
conv_res = type(data_res)(np.add(data_res, self._h_s_offset[i]))
scales_hat = self.h_s[i](scales_hat, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
if not self.context_model:
indexes = self.gaussian_conditional.build_indexes(scales_hat)
y_strings = self.gaussian_conditional.compress(y, indexes)
else:
y_strings = []
conv_res = type(data_res)(np.add(data_res, self._g_s_offset[0]))
for i in range(y.size(0)):
string = self._compress_ar(
y[i:i+1],
scales_hat[i:i+1],
dict_index[conv_res],
dict_weight[conv_res],
self.autoregressive.skipconn,
)
y_strings.append(string)
return {"strings": [y_strings, z_strings], "shape": z.size()[1]}
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
def _compress_ar(self, y_hat, params, neighbors_indices, neighbors_weights, skipconn):
assert len(self.autoregressive.list_conv) == 2, "only 2-hop convolution supported"
neighbors_indices = neighbors_indices.to(y_hat.device)
neighbors_weights = neighbors_weights.to(y_hat.device)
encoder = BufferedRansEncoder()
symbols_list = []
indexes_list = []
n_nodes, n_neighbors = y_hat.size(1), neighbors_indices.size(1)
convs = self.autoregressive.list_conv
# causal mask for convolution
neighbors_weights = torch.mul(neighbors_weights, (neighbors_indices < torch.arange(n_nodes, device=neighbors_weights.device).view(-1, 1)))
for n in range(n_nodes):
# buffer for SDPA conv, should only be calculated at current node n
xs = [torch.zeros(y_hat.size(0), n_neighbors+1 if i==0 else 1, convs[i].weight.size(-1), dtype=y_hat.dtype, device=y_hat.device) for i in range(len(convs))]
for k, k_ind in enumerate([n]+neighbors_indices[n].tolist()): # iteration over current node and its neighbors
if k_ind > n: continue
y_neighbors = torch.mul(y_hat[:, neighbors_indices[k_ind].tolist(), :], neighbors_weights[k_ind].view(1,-1,1))
xs[0][:, k, :] = torch.matmul(y_neighbors.flatten(1,2), convs[0].weight.data[1:].flatten(0,1))
# compute second convolution at current node
xs[1][:, 0, :] = torch.matmul(xs[0][:, 1:, :].flatten(1,2), convs[1].weight.data[1:].flatten(0,1))
# only keep current node
xs[0] = xs[0][:, 0:1, :]
ctx_p = skipconn(xs) if skipconn is not None else xs[-1]
# 1x1 conv for the entropy parameters prediction network, so
# we only keep the elements in the "center"
p = params[:, n:n+1, :]
scales_hat = self.combine_ar_hp(torch.cat((p, ctx_p), dim=-1))
scales_hat = scales_hat.squeeze(1)
# TODO for means: scales_hat, means_hat = gaussian_params.chunk(2, 1)
indexes = self.gaussian_conditional.build_indexes(scales_hat)
y_q = self.gaussian_conditional.quantize(y_hat[:, n, :], "symbols") # TODO if means: , means_hat)
y_hat[:, n, :] = y_q # TODO if means: + means_hat
symbols_list.extend(y_q.reshape(-1).int().tolist())
indexes_list.extend(indexes.reshape(-1).int().tolist())
cdf = self.gaussian_conditional._quantized_cdf.tolist()
cdf_lengths = self.gaussian_conditional._cdf_length.reshape(-1).int().tolist()
offsets = self.gaussian_conditional._offset.reshape(-1).int().tolist()
encoder.encode_with_indexes(
symbols_list,
indexes_list,
cdf,
cdf_lengths,
offsets,
)
string = encoder.flush()
return string
def decompress(self, strings, shape, dict_index, dict_weight, res, patch_res=None, dict_valid_index=None):
assert isinstance(strings, list) and len(strings) == 2
if self.context_model:
if next(self.parameters()).device != torch.device("cpu"):
warnings.warn(
"Inference on GPU is not recommended for the autoregressive "
"models (the entropy coder is run sequentially on CPU).",
stacklevel=2,
)
z_hat = self.entropy_bottleneck.decompress(strings[1], shape)
data_res = res if patch_res is None else (res, patch_res)
########### apply h_s ###########
scales_hat = z_hat
for i in range(len(self.h_s)):
conv_res = type(data_res)(np.add(data_res, self._h_s_offset[i]))
scales_hat = self.h_s[i](scales_hat, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None)
if self.context_model:
s = 4**2 # scaling factor between z and y
n_nodes = z_hat.size(1) * s
y_hat = torch.zeros(z_hat.size(0), n_nodes, self.M, dtype=z_hat.dtype, device=z_hat.device)
conv_res = type(data_res)(np.add(data_res, self._g_s_offset[0]))
for i, y_string in enumerate(strings[0]):
self._decompress_ar(
y_string,
y_hat[i:i+1],
scales_hat[i:i+1],
dict_index[conv_res],
dict_weight[conv_res],
self.autoregressive.skipconn,
)
else:
indexes = self.gaussian_conditional.build_indexes(scales_hat)
y_hat = self.gaussian_conditional.decompress(strings[0], indexes)
########### apply g_s ###########
x_hat = y_hat
for i in range(len(self.g_s)):
conv_res = type(data_res)(np.add(data_res, self._g_s_offset[i]))
if (self.activation.upper()=='RB') or (self.attention and (self.g_s[i].attention_pos > 0)):
conv_res_ = type(data_res)(np.add(data_res, self._g_s_offset[i+1] if i<(len(self.g_s)-1) else self._g_a_offset[0]))
index_, weight_, valid_index_ = dict_index[conv_res_], dict_weight[conv_res_], dict_valid_index[conv_res_] if dict_valid_index is not None else None
else:
index_, weight_, valid_index_ = None, None, None
x_hat = self.g_s[i](x_hat, dict_index[conv_res], dict_weight[conv_res], valid_index=dict_valid_index[conv_res] if dict_valid_index is not None else None,
index_=index_, weight_=weight_, valid_index_=valid_index_)
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
def _decompress_ar(self, y_string, y_hat, params, neighbors_indices, neighbors_weights, skipconn):
cdf = self.gaussian_conditional._quantized_cdf.tolist()
cdf_lengths = self.gaussian_conditional._cdf_length.tolist()
offsets = self.gaussian_conditional._offset.tolist()
neighbors_indices = neighbors_indices.to(y_hat.device)
neighbors_weights = neighbors_weights.to(y_hat.device)
decoder = RansDecoder()
decoder.set_stream(y_string)
n_nodes, n_neighbors = y_hat.size(1), neighbors_indices.size(1)
convs = self.autoregressive.list_conv
# Warning: this is slow due to the auto-regressive nature of the decoding
for n in range(n_nodes):
xs = [torch.zeros(y_hat.size(0), n_neighbors+1 if i==0 else 1, convs[i].weight.size(-1), dtype=y_hat.dtype, device=y_hat.device) for i in range(len(convs))]
for k, k_ind in enumerate([n]+neighbors_indices[n].tolist()): # iteration over current node and its neighbors
if k_ind > n: continue
y_neighbors = torch.mul(y_hat[:, neighbors_indices[k_ind].tolist(), :], neighbors_weights[k_ind].view(1,-1,1))
xs[0][:, k, :] = torch.matmul(y_neighbors.flatten(1,2), convs[0].weight.data[1:].flatten(0,1))
# compute second convolution at current node
xs[1][:, 0, :] = torch.matmul(xs[0][:, 1:, :].flatten(1,2), convs[1].weight.data[1:].flatten(0,1))
# only keep current node
xs[0] = xs[0][:, 0:1, :]
ctx_p = skipconn(xs) if skipconn is not None else xs[-1]
# 1x1 conv for the entropy parameters prediction network, so
# we only keep the elements in the "center"
p = params[:, n:n+1, :]
scales_hat = self.combine_ar_hp(torch.cat((p, ctx_p), dim=-1))
# TODO for mean: scales_hat, means_hat = gaussian_params.chunk(2, 1)
indexes = self.gaussian_conditional.build_indexes(scales_hat)
rv = decoder.decode_stream(
indexes.squeeze().tolist(),
cdf,
cdf_lengths,
offsets,
)
rv = torch.Tensor(rv).reshape(1, 1, -1)
rv = self.gaussian_conditional.dequantize(rv) # TODO add mean: , means_hat)
y_hat[:, n:n+1, :] = rv