Mentions légales du service

Skip to content
Snippets Groups Projects
Commit c02b09fd authored by GUILLEMOT Alexandre's avatar GUILLEMOT Alexandre
Browse files

small bug corrections

parent 8731d8bd
No related branches found
No related tags found
No related merge requests found
......@@ -19,7 +19,7 @@ parser.add_argument("-n", action='store_true',
args = parser.parse_args()
# Recovering data
assert Path(args.entries), "Specify valid path"
assert Path(args.entries).exists(), "Specify valid path"
entries_file = open(args.entries, "r")
try:
......@@ -37,6 +37,13 @@ for i, pkg_name in enumerate(pkg_list):
print(f"Data {j + 1}/{len(data_list)}")
pkg_path = (Path("packages") / Path(f"{pkg_name}")).with_suffix(".py")
data_name = Path(data_path)
if not ((Path("benchmarks") / data_name / pkg_name / "info.json").exists() and args.n):
try:
assert args.n
info_file = open(str(Path("benchmarks") /
data_name / pkg_name / "info.json"), "r")
info = json.load(info_file)
assert not info["killed manually"]
assert not info["script error"]
except:
subprocess.run(["python3", "runtest.py", str(pkg_path), str(("data" / Path(data_path)).with_suffix(".json"))] + ["--timeout", str(args.timeout)]*(
args.timeout != None) + ["--mem", str(args.mem)]*(args.mem != None) + ["--perf"]*args.perf)
......@@ -158,6 +158,10 @@ if not args.norun:
os.killpg(os.getpgid(p.pid), signal.SIGTERM)
_, _ = p.communicate()
info_dict["timeout error"] = True
except:
os.killpg(os.getpgid(p.pid), signal.SIGTERM)
_, _ = p.communicate()
out_file.close()
log_file.close()
......
......@@ -177,8 +177,8 @@ result_stats = {
"q1steps": lambda res: steps_format(round(numpy.quantile([int(p) for p in res["steplist"] if p is not None], 0.25), 1)),
"q3steps": lambda res: steps_format(round(numpy.quantile([int(p) for p in res["steplist"] if p is not None], 0.75), 1)),
"maxprec": lambda res: str(max([int(p) for p in res["maxpreclist"]])),
"meanprec": lambda res: str(numpy.mean([int(p) for p in res["meanpreclist"]])),
"wmeanprec": lambda res: str(numpy.mean([int(p) for p in res["weightedmeanpreclist"]])),
"meanprec": lambda res: steps_format(numpy.mean([int(p) for p in res["meanpreclist"]])),
"wmeanprec": lambda res: steps_format(numpy.mean([int(p) for p in res["weightedmeanpreclist"]])),
}
def _table(data, branch, node):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment