Mentions légales du service
Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pySake
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
moex
pySake
Commits
a2284d25
Commit
a2284d25
authored
2 years ago
by
AGUIRRE-CERVANTES Jose-Luis
Browse files
Options
Downloads
Patches
Plain Diff
cleaning old code
parent
d93eb118
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
plots/plotreing.py
+4
-91
4 additions, 91 deletions
plots/plotreing.py
with
4 additions
and
91 deletions
plots/plotreing.py
+
4
−
91
View file @
a2284d25
...
...
@@ -11,53 +11,7 @@ dict_ops = {'size':['Size','size'],'successrate':['Succes rate','srate'],'f-meas
sep
=
os
.
environ
.
get
(
"
sep
"
,
"
"
)
# default to space
#### All this is legacy code for the first Notebook generation
def
plot_average_curve_for_list_of_patterns
(
data
,
label
,
col
,
ops
,
maxval
,
nbgames
,
pattern_list
):
fig
=
plt
.
figure
(
figsize
=
(
12
,
3
))
ax
=
plt
.
gca
()
linestylelist
=
[
'
solid
'
,
'
dashed
'
,
'
dotted
'
,
'
dashdot
'
]
ind
=
0
for
pattern
,
ls
in
zip
(
pattern_list
,
linestylelist
):
plt
.
gca
().
set_prop_cycle
(
None
)
for
op
in
ops
:
data
[
ind
].
iloc
[
1
::
100
].
plot
(
kind
=
'
line
'
,
y
=
col
,
label
=
op
,
ax
=
ax
,
linestyle
=
ls
,
linewidth
=
1.0
)
#, marker='*', color='blue'
ind
+=
1
ax
.
set_xlabel
(
'
games
'
)
# Add an x-label to the axes.
ax
.
set_xlim
([
0
,
nbgames
])
ax
.
set_ylabel
(
label
)
# Add a y-label to the axes.
ax
.
set_ylim
([
0
,
maxval
])
#ax.set_ylim([0,100])
ax
.
spines
[
'
top
'
].
set_visible
(
False
)
# suppress top and right bars
ax
.
spines
[
'
right
'
].
set_visible
(
False
)
#
#ax.set_title(label+" for "+pattern) # Add a title to the axes.
ax
.
set_title
(
label
)
# Add a title to the axes.
#ax.legend(loc='center', bbox_to_anchor=(0.5, -0.05), shadow=True, ncol=2) # Add a legend.
ax
.
legend
()
# ncol=2
#
plt
.
show
()
# Returns an ordered array of the data for a list of patterns
def
prepare_pattern_list_simple_data
(
ops
,
nbgames
,
pattern_list
,
results_directory
,
observed_variables
):
dataArray
=
[]
for
pattern
in
pattern_list
:
for
op
in
ops
:
dataArray
.
append
(
load_norm_data
(
pattern
.
replace
(
"
%%
"
,
op
),
results_directory
,
observed_variables
)
)
return
dataArray
def
print_data_series
(
pattern_list
,
nbiter
,
results_directory
,
observed_variables
):
allops
=
[
'
delete
'
,
'
replace
'
,
'
refine
'
,
'
add
'
,
'
addjoin
'
,
'
refadd
'
]
dataframes
=
prepare_pattern_list_simple_data
(
allops
,
nbiter
,
pattern_list
,
results_directory
,
observed_variables
)
# here it would be good to scrap the MAXSIZE. This can be done in the data
plot_average_curve
(
dataframes
,
"
Size
"
,
'
size
'
,
allops
,
120
,
nbiter
,
pattern_list
)
plot_average_curve
(
dataframes
,
"
Success rate
"
,
'
srate
'
,
allops
,
1
,
nbiter
,
pattern_list
)
plot_average_curve
(
dataframes
,
"
Precision
"
,
'
prec
'
,
allops
,
1
,
nbiter
,
pattern_list
)
plot_average_curve
(
dataframes
,
"
F-measure
"
,
'
fmeas
'
,
allops
,
1
,
nbiter
,
pattern_list
)
plot_average_curve
(
dataframes
,
"
Recall
"
,
'
rec
'
,
allops
,
1
,
nbiter
,
pattern_list
)
#### All this is new code for Notebook generation
#### New code for Notebook generation
# Returns the prefix of the files in the results directory of the experience 'label'
# prefix could be label+nbAgents+nbIterations or just nbAgents+nbIterations
...
...
@@ -128,42 +82,6 @@ def prepare_data_for_labels(labelpatts,base_directory,observed_variables):
dataDict
[
filepattern
]
=
df
return
(
dataDict
)
# Prepare data for all plots
#Returns a dictionary where the keys are combinations of an experience+pattern
def
prepare_all_dataOld
(
allplots
,
results_directory
,
labelexp
,
prefix
,
ops
,
observed_variables
):
dataDict
=
{}
for
group
in
allplots
:
#a group: [[['Size', 'Games', '10000', '120'], ['20180601-NOOR', 'clever-nr-gen'], ['20180529-NOOR', 'clever-nr']], [['Size', 'Games (im80)', '10000', '120'], ['20180601-NOOR', 'clever-nr-im80-gen'], ['20180530-NOOR', 'clever-nr-im80']]]
for
plot
in
group
:
#a plot: [['Size', 'Games', '10000', '120'], ['20180601-NOOR', 'clever-nr-gen'], ['20180529-NOOR', 'clever-nr']]
for
filepair
in
plot
[
1
:]:
#a filepair: ['20180601-NOOR', 'clever-nr-gen']
#filepair[0] can be the current experience or other experience
#filepair[1] is a pattern
filepattern
=
filepair
[
0
]
+
filepair
[
1
]
if
not
(
filepattern
in
dataDict
):
#This is for manage cases where there is no pattern, files concern just operators
opPattern
=
'
%%-
'
if
filepair
[
1
]
==
''
:
opPattern
=
'
%%
'
#We look for the directory containing result files and also for the prefix of the files in that directory
# LABEL+NBAGENTS+ITERATIONS or just NBAGENTS+ITERATIONS
filesprefix
=
prefix
resdir
=
results_directory
if
not
filepair
[
0
]
==
labelexp
:
#if (not filepair[0] == labelexp) and (labelexp != '20170529-NOOR'):
local_directory
=
os
.
getcwd
()
resdir
=
local_directory
+
'
/../
'
+
filepair
[
0
]
+
'
/results/
'
filesprefix
=
getPrefix
(
resdir
,
filepair
[
0
],
'
tsv
'
)
#This also works for resdir
#resdir = results_directory+'/../../'+filepair[0]+'/results/'
#display("Will prepare dataframe for "+filesprefix+filepair[1]+" in "+resdir)
if
(
labelexp
==
'
20170208-NOOR
'
):
ops
=
[
'
add
'
,
'
del
'
,
'
repl
'
]
df
=
prepare_pattern_data
(
ops
,
filesprefix
+
opPattern
+
filepair
[
1
],
resdir
,
observed_variables
)
dataDict
[
filepattern
]
=
df
return
(
dataDict
)
# Prepare data needed for all plots
# Returns a dictionary where the keys are combinations of an experience+pattern
def
prepare_all_data
(
expPatterns
,
results_directory
,
labelexp
,
prefix
,
ops
,
observed_variables
):
...
...
@@ -237,7 +155,7 @@ def plot_datafiles_curve( alldata, indexes, ops, ylabel, xlabel, xmax, ymax, col
#
plt
.
show
()
def
plot_average_curve
(
alldata
,
indexes
,
ylabel
,
xlabel
,
xmax
,
ymax
,
col
,
ops
,
nbgames
):
def
plot_average_curve
(
alldata
,
indexes
,
ylabel
,
xlabel
,
xmax
,
ymax
,
col
,
ops
):
fig
=
plt
.
figure
(
figsize
=
(
12
,
3
))
ax
=
plt
.
gca
()
linestylelist
=
[
'
solid
'
,
'
dashed
'
,
'
dotted
'
,
'
dashdot
'
]
...
...
@@ -279,7 +197,7 @@ def print_datafiles( alldf, plotinfo, labelpatts, cols, nbiter ):
#plot_datafiles_curve_data( alldf, indexes, cols )
plot_datafiles_curve
(
alldf
,
indexes
,
cols
,
plotlabel
,
xlabel
,
xmax
,
ymax
,
col
,
nbiter
)
def
print_one_series
(
alldf
,
plotinfo
,
patterns
,
operators
,
nbiter
):
def
print_one_series
(
alldf
,
plotinfo
,
patterns
,
operators
):
# plotinfo: ['Size', 'Games', '10000', '120']
# patterns: [['20180601-NOOR', 'clever-nr-gen'], ['20180529-NOOR', 'clever-nr']]
#print("Will build plot for ")
...
...
@@ -294,14 +212,9 @@ def print_one_series( alldf, plotinfo, patterns, operators, nbiter ):
xlabel
=
plotinfo
[
1
]
xmax
=
int
(
plotinfo
[
2
])
ymax
=
int
(
plotinfo
[
3
])
plot_average_curve
(
alldf
,
indexes
,
plotlabel
,
xlabel
,
xmax
,
ymax
,
col
,
operators
,
nbiter
)
plot_average_curve
(
alldf
,
indexes
,
plotlabel
,
xlabel
,
xmax
,
ymax
,
col
,
operators
)
### Print all plots of an experience extracted from the latexfile
#def print_all_series( label, latexfile, prefix, nbiter, results_directory, operators, observed_variables ):
#allplots = getPlots(latexfile,label,'[0-9]-[0-9]+-')
#print(plots)
#def print_all_series( label, allplots, prefix, nbiter, results_directory, operators, observed_variables ):
# alldf = prepare_all_data(allplots,results_directory,label,prefix,operators,observed_variables)
def
print_all_series
(
allplots
,
alldf
,
operators
,
nbiter
):
for
group
in
allplots
:
for
plot
in
group
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment