Mentions légales du service

Skip to content
Snippets Groups Projects
Verified Commit d1dddc8d authored by ANDREY Paul's avatar ANDREY Paul
Browse files

Add unit tests for 'FairgradWeightsController'.

parent d71ec0fd
No related branches found
No related tags found
1 merge request!69Enable Fairness-Aware Federated Learning
# coding: utf-8
# Copyright 2023 Inria (Institut National de Recherche en Informatique
# et Automatique)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Unit tests for FairGrad weights computation controller."""
from unittest import mock
import numpy as np
import pytest
from declearn.fairness.api import FairnessFunction
from declearn.fairness.fairgrad import FairgradWeightsController
COUNTS = {(0, 0): 30, (0, 1): 15, (1, 0): 35, (1, 1): 20}
F_TYPES = [
"accuracy_parity",
"demographic_parity",
"equality_of_opportunity",
"equalized_odds",
]
class TestFairgradWeightsController:
"""Unit tests for 'FairgradWeightsController'.
These tests cover both the formal behavior of methods
and the correctness of the wrapped math operations.
"""
@pytest.mark.parametrize("f_type", F_TYPES)
def test_init(
self,
f_type: str,
) -> None:
"""Test that instantiation hyper-parameters are properly passed."""
eta = mock.create_autospec(float, instance=True)
eps = mock.create_autospec(float, instance=True)
controller = FairgradWeightsController(
counts=COUNTS.copy(),
f_type=f_type,
eta=eta,
eps=eps,
)
assert controller.eta is eta
assert controller.eps is eps
assert controller.total == sum(COUNTS.values())
assert isinstance(controller.function, FairnessFunction)
assert controller.function.f_type == f_type
assert (controller.f_k == 0).all()
def test_get_current_weights_initial(self) -> None:
"""Test that initial weights are properly computed / accessed."""
controller = FairgradWeightsController(
counts=COUNTS.copy(), f_type="accuracy_parity"
)
# Verify that initial weights match expectations (i.e. P(T_k)).
weights = controller.get_current_weights(norm_nk=False)
expectw = [val / controller.total for val in COUNTS.values()]
assert weights == expectw
# Verify that 'norm_nk' parameter has proper effect.
weights = controller.get_current_weights(norm_nk=True)
expectw = [1 / controller.total] * len(COUNTS)
assert weights == expectw
@pytest.mark.parametrize("exact", [True, False], ids=["exact", "epsilon"])
@pytest.mark.parametrize("f_type", F_TYPES)
def test_update_weights_based_on_accuracy(
self,
f_type: str,
exact: bool,
) -> None:
"""Test that weights update works properly."""
# Setup a controller and update its weights using arbitrary values.
controller = FairgradWeightsController(
counts=COUNTS.copy(), f_type=f_type, eps=0.0 if exact else 0.01
)
accuracy = {group: 0.2 * idx for idx, group in enumerate(COUNTS)}
controller.update_weights_based_on_accuracy(accuracy)
# Verify that proper values were assigned as current fairness.
f_k = controller.function.compute_from_federated_group_accuracy(
accuracy
)
assert (controller.f_k == np.array(list(f_k.values()))).all()
# Verify that expected weights are returned.
c_kk = controller.function.constants[1]
p_tk = controller.counts / controller.total
if exact:
w_tk = controller.eta * controller.f_k
else:
w_tk = np.abs(controller.f_k)
w_tk = controller.eta * np.where(
w_tk > controller.eps, w_tk - controller.eps, 0.0
)
expectw = p_tk + np.dot(w_tk, c_kk)
weights = controller.get_current_weights(norm_nk=False)
assert np.allclose(expectw, np.array(weights), atol=0.001)
# Same check with 'norm_nk = True'.
expectw /= controller.counts
weights = controller.get_current_weights(norm_nk=True)
assert np.allclose(expectw, np.array(weights), atol=0.001)
@pytest.mark.parametrize("f_type", F_TYPES)
def test_get_current_fairness(
self,
f_type: str,
) -> None:
"""Test that access to current fairness values works properly."""
controller = FairgradWeightsController(
counts=COUNTS.copy(), f_type=f_type
)
accuracy = {group: 0.2 * idx for idx, group in enumerate(COUNTS)}
controller.update_weights_based_on_accuracy(accuracy)
fairness = controller.get_current_fairness()
assert isinstance(fairness, dict)
assert fairness == dict(
zip(controller.function.groups, controller.f_k)
)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment