Mentions légales du service

Skip to content
Snippets Groups Projects
Verified Commit 71e66792 authored by ANDREY Paul's avatar ANDREY Paul
Browse files

Add unit tests for FairFed backend tools.

parent 80238896
No related branches found
No related tags found
1 merge request!69Enable Fairness-Aware Federated Learning
# coding: utf-8
# Copyright 2023 Inria (Institut National de Recherche en Informatique
# et Automatique)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Unit tests for FairFed-specific Aggregator subclass."""
from unittest import mock
from declearn.fairness.fairfed import FairfedAggregator
from declearn.model.api import Vector
class TestFairfedAggregator:
"""Unit tests for 'declearn.fairness.fairfed.FairfedAggregator'."""
def test_init_beta(self) -> None:
"""Test that the 'beta' parameter is properly assigned."""
beta = mock.create_autospec(float, instance=True)
aggregator = FairfedAggregator(beta=beta)
assert aggregator.beta is beta
def test_prepare_for_sharing_initial(self) -> None:
"""Test that 'prepare_for_sharing' has expected outputs at first."""
# Set up an uninitialized aggregator and prepare mock updates.
aggregator = FairfedAggregator(beta=1.0)
updates = mock.create_autospec(Vector, instance=True)
model_updates = aggregator.prepare_for_sharing(updates, n_steps=10)
# Verify that outputs match expectations.
updates.__mul__.assert_called_once_with(1.0)
assert model_updates.updates is updates.__mul__.return_value
assert model_updates.weights == 1.0
def test_initialize_local_weight(self) -> None:
"""Test that 'initialize_local_weight' works properly."""
# Set up an aggregator, initialize it and prepare mock updates.
n_samples = 100
aggregator = FairfedAggregator(beta=1.0)
aggregator.initialize_local_weight(n_samples=n_samples)
updates = mock.create_autospec(Vector, instance=True)
model_updates = aggregator.prepare_for_sharing(updates, n_steps=10)
# Verify that outputs match expectations.
updates.__mul__.assert_called_once_with(n_samples)
assert model_updates.updates is updates.__mul__.return_value
assert model_updates.weights == n_samples
def test_update_local_weight(self) -> None:
"""Test that 'update_local_weight' works properly."""
# Set up a FairFed aggregator and initialize it.
n_samples = 100
aggregator = FairfedAggregator(beta=0.1)
aggregator.initialize_local_weight(n_samples=n_samples)
# Perform a local wiehgt update with arbitrary values.
aggregator.update_local_weight(delta_loc=2.0, delta_avg=5.0)
# Verify that updates have expected weight.
updates = mock.create_autospec(Vector, instance=True)
expectw = n_samples - 0.1 * (2.0 - 5.0) # w_0 - beta * diff_delta
model_updates = aggregator.prepare_for_sharing(updates, n_steps=10)
updates.__mul__.assert_called_once_with(expectw)
assert model_updates.updates is updates.__mul__.return_value
assert model_updates.weights == expectw
# coding: utf-8
# Copyright 2023 Inria (Institut National de Recherche en Informatique
# et Automatique)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Unit tests for FairFed-specific fairness value computer."""
import warnings
from typing import Any, List, Tuple
import pytest
from declearn.fairness.fairfed import FairfedValueComputer
GROUPS_BINARY = [
(target, s_attr) for target in (0, 1) for s_attr in (0, 1)
] # type: List[Tuple[Any, ...]]
GROUPS_EXTEND = [
(tgt, s_a, s_b) for tgt in (0, 1, 2) for s_a in (0, 1) for s_b in (1, 2)
] # type: List[Tuple[Any, ...]]
F_TYPES = [
"accuracy_parity",
"demographic_parity",
"equality_of_opportunity",
"equalized_odds",
]
class TestFairfedValueComputer:
"""Unit tests for 'declearn.fairness.fairfed.FairfedValueComputer'."""
@pytest.mark.parametrize("target", [1, 0], ids=["target1", "target0"])
@pytest.mark.parametrize("f_type", F_TYPES)
def test_identify_key_groups_binary(
self,
f_type: str,
target: int,
) -> None:
"""Test 'identify_key_groups' with binary target and attribute."""
computer = FairfedValueComputer(f_type, strict=True, target=target)
if f_type == "accuracy_parity":
with pytest.warns(RuntimeWarning):
key_groups = computer.identify_key_groups(GROUPS_BINARY.copy())
else:
key_groups = computer.identify_key_groups(GROUPS_BINARY.copy())
assert key_groups == ((target, 0), (target, 1))
@pytest.mark.parametrize("f_type", F_TYPES)
def test_identify_key_groups_extended_exception(
self,
f_type: str,
) -> None:
"""Test 'identify_key_groups' exception raising with extended groups.
'Extended' groups arise from a non-binary label intersected with
two distinct binary sensitive groups.
"""
computer = FairfedValueComputer(f_type, strict=True, target=1)
with pytest.raises(RuntimeError):
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
computer.identify_key_groups(GROUPS_EXTEND.copy())
@pytest.mark.parametrize("binary", [True, False], ids=["binary", "extend"])
@pytest.mark.parametrize("strict", [True, False], ids=["strict", "free"])
@pytest.mark.parametrize("f_type", F_TYPES[1:]) # avoid warning on AccPar
def test_initialize(
self,
f_type: str,
strict: bool,
binary: bool,
) -> None:
"""Test that 'initialize' raises an exception in expected cases."""
computer = FairfedValueComputer(f_type, strict=strict, target=1)
groups = (GROUPS_BINARY if binary else GROUPS_EXTEND).copy()
if strict and not binary:
with pytest.raises(RuntimeError):
computer.initialize(groups)
else:
computer.initialize(groups)
@pytest.mark.parametrize("strict", [True, False], ids=["strict", "free"])
def test_compute_synthetic_fairness_value_binary(
self,
strict: bool,
) -> None:
"""Test 'compute_synthetic_fairness_value' with 4 groups.
This test only applies to both strict and non-strict modes.
"""
# Compute a synthetic value using arbitrary inputs.
fairness = {
group: float(idx) for idx, group in enumerate(GROUPS_BINARY)
}
computer = FairfedValueComputer(
f_type="demographic_parity",
strict=strict,
target=1,
)
computer.initialize(list(fairness))
value = computer.compute_synthetic_fairness_value(fairness)
# Verify that the ouput value matches expectations.
if strict:
expected = fairness[(1, 0)] - fairness[(1, 1)]
else:
expected = sum(fairness.values()) / len(fairness)
assert value == expected
def test_compute_synthetic_fairness_value_extended(
self,
) -> None:
"""Test 'compute_synthetic_fairness_value' with many groups.
This test only applies to the non-strict mode.
"""
# Compute a synthetic value using arbitrary inputs.
fairness = {
group: float(idx) for idx, group in enumerate(GROUPS_EXTEND)
}
computer = FairfedValueComputer(
f_type="demographic_parity",
strict=False,
)
computer.initialize(list(fairness))
value = computer.compute_synthetic_fairness_value(fairness)
# Verify that the ouput value matches expectations.
expected = sum(fairness.values()) / len(fairness)
assert value == expected
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment