Mentions légales du service
Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
declearn2
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Magnet
DecLearn
declearn2
Commits
71e66792
Verified
Commit
71e66792
authored
9 months ago
by
ANDREY Paul
Browse files
Options
Downloads
Patches
Plain Diff
Add unit tests for FairFed backend tools.
parent
80238896
No related branches found
No related tags found
1 merge request
!69
Enable Fairness-Aware Federated Learning
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
test/fairness/algorithms/test_fairfed_aggregator.py
+74
-0
74 additions, 0 deletions
test/fairness/algorithms/test_fairfed_aggregator.py
test/fairness/algorithms/test_fairfed_computer.py
+141
-0
141 additions, 0 deletions
test/fairness/algorithms/test_fairfed_computer.py
with
215 additions
and
0 deletions
test/fairness/algorithms/test_fairfed_aggregator.py
0 → 100644
+
74
−
0
View file @
71e66792
# coding: utf-8
# Copyright 2023 Inria (Institut National de Recherche en Informatique
# et Automatique)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Unit tests for FairFed-specific Aggregator subclass.
"""
from
unittest
import
mock
from
declearn.fairness.fairfed
import
FairfedAggregator
from
declearn.model.api
import
Vector
class
TestFairfedAggregator
:
"""
Unit tests for
'
declearn.fairness.fairfed.FairfedAggregator
'
.
"""
def
test_init_beta
(
self
)
->
None
:
"""
Test that the
'
beta
'
parameter is properly assigned.
"""
beta
=
mock
.
create_autospec
(
float
,
instance
=
True
)
aggregator
=
FairfedAggregator
(
beta
=
beta
)
assert
aggregator
.
beta
is
beta
def
test_prepare_for_sharing_initial
(
self
)
->
None
:
"""
Test that
'
prepare_for_sharing
'
has expected outputs at first.
"""
# Set up an uninitialized aggregator and prepare mock updates.
aggregator
=
FairfedAggregator
(
beta
=
1.0
)
updates
=
mock
.
create_autospec
(
Vector
,
instance
=
True
)
model_updates
=
aggregator
.
prepare_for_sharing
(
updates
,
n_steps
=
10
)
# Verify that outputs match expectations.
updates
.
__mul__
.
assert_called_once_with
(
1.0
)
assert
model_updates
.
updates
is
updates
.
__mul__
.
return_value
assert
model_updates
.
weights
==
1.0
def
test_initialize_local_weight
(
self
)
->
None
:
"""
Test that
'
initialize_local_weight
'
works properly.
"""
# Set up an aggregator, initialize it and prepare mock updates.
n_samples
=
100
aggregator
=
FairfedAggregator
(
beta
=
1.0
)
aggregator
.
initialize_local_weight
(
n_samples
=
n_samples
)
updates
=
mock
.
create_autospec
(
Vector
,
instance
=
True
)
model_updates
=
aggregator
.
prepare_for_sharing
(
updates
,
n_steps
=
10
)
# Verify that outputs match expectations.
updates
.
__mul__
.
assert_called_once_with
(
n_samples
)
assert
model_updates
.
updates
is
updates
.
__mul__
.
return_value
assert
model_updates
.
weights
==
n_samples
def
test_update_local_weight
(
self
)
->
None
:
"""
Test that
'
update_local_weight
'
works properly.
"""
# Set up a FairFed aggregator and initialize it.
n_samples
=
100
aggregator
=
FairfedAggregator
(
beta
=
0.1
)
aggregator
.
initialize_local_weight
(
n_samples
=
n_samples
)
# Perform a local wiehgt update with arbitrary values.
aggregator
.
update_local_weight
(
delta_loc
=
2.0
,
delta_avg
=
5.0
)
# Verify that updates have expected weight.
updates
=
mock
.
create_autospec
(
Vector
,
instance
=
True
)
expectw
=
n_samples
-
0.1
*
(
2.0
-
5.0
)
# w_0 - beta * diff_delta
model_updates
=
aggregator
.
prepare_for_sharing
(
updates
,
n_steps
=
10
)
updates
.
__mul__
.
assert_called_once_with
(
expectw
)
assert
model_updates
.
updates
is
updates
.
__mul__
.
return_value
assert
model_updates
.
weights
==
expectw
This diff is collapsed.
Click to expand it.
test/fairness/algorithms/test_fairfed_computer.py
0 → 100644
+
141
−
0
View file @
71e66792
# coding: utf-8
# Copyright 2023 Inria (Institut National de Recherche en Informatique
# et Automatique)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Unit tests for FairFed-specific fairness value computer.
"""
import
warnings
from
typing
import
Any
,
List
,
Tuple
import
pytest
from
declearn.fairness.fairfed
import
FairfedValueComputer
GROUPS_BINARY
=
[
(
target
,
s_attr
)
for
target
in
(
0
,
1
)
for
s_attr
in
(
0
,
1
)
]
# type: List[Tuple[Any, ...]]
GROUPS_EXTEND
=
[
(
tgt
,
s_a
,
s_b
)
for
tgt
in
(
0
,
1
,
2
)
for
s_a
in
(
0
,
1
)
for
s_b
in
(
1
,
2
)
]
# type: List[Tuple[Any, ...]]
F_TYPES
=
[
"
accuracy_parity
"
,
"
demographic_parity
"
,
"
equality_of_opportunity
"
,
"
equalized_odds
"
,
]
class
TestFairfedValueComputer
:
"""
Unit tests for
'
declearn.fairness.fairfed.FairfedValueComputer
'
.
"""
@pytest.mark.parametrize
(
"
target
"
,
[
1
,
0
],
ids
=
[
"
target1
"
,
"
target0
"
])
@pytest.mark.parametrize
(
"
f_type
"
,
F_TYPES
)
def
test_identify_key_groups_binary
(
self
,
f_type
:
str
,
target
:
int
,
)
->
None
:
"""
Test
'
identify_key_groups
'
with binary target and attribute.
"""
computer
=
FairfedValueComputer
(
f_type
,
strict
=
True
,
target
=
target
)
if
f_type
==
"
accuracy_parity
"
:
with
pytest
.
warns
(
RuntimeWarning
):
key_groups
=
computer
.
identify_key_groups
(
GROUPS_BINARY
.
copy
())
else
:
key_groups
=
computer
.
identify_key_groups
(
GROUPS_BINARY
.
copy
())
assert
key_groups
==
((
target
,
0
),
(
target
,
1
))
@pytest.mark.parametrize
(
"
f_type
"
,
F_TYPES
)
def
test_identify_key_groups_extended_exception
(
self
,
f_type
:
str
,
)
->
None
:
"""
Test
'
identify_key_groups
'
exception raising with extended groups.
'
Extended
'
groups arise from a non-binary label intersected with
two distinct binary sensitive groups.
"""
computer
=
FairfedValueComputer
(
f_type
,
strict
=
True
,
target
=
1
)
with
pytest
.
raises
(
RuntimeError
):
with
warnings
.
catch_warnings
():
warnings
.
simplefilter
(
"
ignore
"
,
RuntimeWarning
)
computer
.
identify_key_groups
(
GROUPS_EXTEND
.
copy
())
@pytest.mark.parametrize
(
"
binary
"
,
[
True
,
False
],
ids
=
[
"
binary
"
,
"
extend
"
])
@pytest.mark.parametrize
(
"
strict
"
,
[
True
,
False
],
ids
=
[
"
strict
"
,
"
free
"
])
@pytest.mark.parametrize
(
"
f_type
"
,
F_TYPES
[
1
:])
# avoid warning on AccPar
def
test_initialize
(
self
,
f_type
:
str
,
strict
:
bool
,
binary
:
bool
,
)
->
None
:
"""
Test that
'
initialize
'
raises an exception in expected cases.
"""
computer
=
FairfedValueComputer
(
f_type
,
strict
=
strict
,
target
=
1
)
groups
=
(
GROUPS_BINARY
if
binary
else
GROUPS_EXTEND
).
copy
()
if
strict
and
not
binary
:
with
pytest
.
raises
(
RuntimeError
):
computer
.
initialize
(
groups
)
else
:
computer
.
initialize
(
groups
)
@pytest.mark.parametrize
(
"
strict
"
,
[
True
,
False
],
ids
=
[
"
strict
"
,
"
free
"
])
def
test_compute_synthetic_fairness_value_binary
(
self
,
strict
:
bool
,
)
->
None
:
"""
Test
'
compute_synthetic_fairness_value
'
with 4 groups.
This test only applies to both strict and non-strict modes.
"""
# Compute a synthetic value using arbitrary inputs.
fairness
=
{
group
:
float
(
idx
)
for
idx
,
group
in
enumerate
(
GROUPS_BINARY
)
}
computer
=
FairfedValueComputer
(
f_type
=
"
demographic_parity
"
,
strict
=
strict
,
target
=
1
,
)
computer
.
initialize
(
list
(
fairness
))
value
=
computer
.
compute_synthetic_fairness_value
(
fairness
)
# Verify that the ouput value matches expectations.
if
strict
:
expected
=
fairness
[(
1
,
0
)]
-
fairness
[(
1
,
1
)]
else
:
expected
=
sum
(
fairness
.
values
())
/
len
(
fairness
)
assert
value
==
expected
def
test_compute_synthetic_fairness_value_extended
(
self
,
)
->
None
:
"""
Test
'
compute_synthetic_fairness_value
'
with many groups.
This test only applies to the non-strict mode.
"""
# Compute a synthetic value using arbitrary inputs.
fairness
=
{
group
:
float
(
idx
)
for
idx
,
group
in
enumerate
(
GROUPS_EXTEND
)
}
computer
=
FairfedValueComputer
(
f_type
=
"
demographic_parity
"
,
strict
=
False
,
)
computer
.
initialize
(
list
(
fairness
))
value
=
computer
.
compute_synthetic_fairness_value
(
fairness
)
# Verify that the ouput value matches expectations.
expected
=
sum
(
fairness
.
values
())
/
len
(
fairness
)
assert
value
==
expected
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment