Mentions légales du service

Skip to content
Snippets Groups Projects

LLM perspectives

This codebase is based on MMLU codebase. - link

Installation

Setup the conda env

conda create -n llm_persp python=3.9
pip install -r requirements.txt 
pip install git+https://github.com/huggingface/transformers@c612628045821f909020f7eb6784c79700813eda

Install llama if you want to run LLaMa models (this step is not needed to recreate experiments in the paper)

Initialize and fetch the llama submodule

git submodule update --init --recursive

pip install -r llama/requirements.txt pip install -e llama/

Set up llama_dir in evaluate.py - the dir with checkpoints and encoder

Run LLaMa evaluation by:

torchrun --nproc_per_node <MP> evaluate.py -k 1 -d data -e <model>

Different models require different MP values:

Model MP
llama_7B 1
llama_13B 2
llama_30B 4
llama_65B 8

Replace 7B with 13B, 30B, 65B per choice.

Running experiments

Script run_dummy.sh shows an example of how to run a model.

Scripts run_[neurips,iclr]_[pvq,hof,big5].sh contain the commands used to run our experiments.

Evaluation

The bar_viz.py script is used for visualization evaluation and statistical analysis. It can be used as such:

python visualization_scripts/bar_viz.py results_iclr/results_pvq_test_sim_conv_gpt-3.5-turbo-0301_perm_50_theme/*

Scripts [neurips,iclr]_evaluations.sh contain command to evaluate and plot the results from our experiments.