Mentions légales du service
Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
faust
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
faust group
faust
Commits
ef667304
Commit
ef667304
authored
1 year ago
by
CARRIVAIN Pascal
Browse files
Options
Downloads
Patches
Plain Diff
add benchmark of fdb backend
parent
5f09f81c
No related branches found
No related tags found
1 merge request
!1
review of fdb function
Pipeline
#985703
failed
1 year ago
Stage: test
Stage: pkg_purepy
Stage: pkg
Stage: pkg_test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
wrapper/python/pyfaust/benchmark/benchmark_fdb.py
+196
-0
196 additions, 0 deletions
wrapper/python/pyfaust/benchmark/benchmark_fdb.py
with
196 additions
and
0 deletions
wrapper/python/pyfaust/benchmark/benchmark_fdb.py
0 → 100644
+
196
−
0
View file @
ef667304
#!/usr/bin/python
# -*- coding: utf-8 -*-
import
gc
import
getopt
import
json
import
os
import
sys
import
time
import
matplotlib
# matplotlib.use('Agg')
import
matplotlib.pyplot
as
plt
import
matplotlib.colors
as
clr
cmap
=
plt
.
get_cmap
(
"
rainbow
"
)
plt
.
rcParams
.
update
({
"
font.size
"
:
14
})
plt
.
rcParams
.
update
({
"
lines.linewidth
"
:
3
})
plt
.
rcParams
.
update
({
"
lines.markersize
"
:
6
})
from
pyfaust
import
fact
import
numpy
as
np
import
torch
def
argitem
(
x
,
v
):
return
np
.
where
(
x
==
v
)[
0
][
0
]
# return np.argmin(np.absolute(x - v))
def
main
(
argv
):
# default parameters
run_fdb
=
False
seed
=
1
# read parameters from command line
try
:
opts
,
args
=
getopt
.
getopt
(
argv
,
"
h
"
,
[
"
run_fdb
"
,
"
seed=
"
,
],
)
except
getopt
.
GetoptError
as
err
:
print
(
err
)
sys
.
exit
(
2
)
for
opt
,
arg
in
opts
:
if
opt
==
"
-h
"
:
print
(
"
example:
\n
"
)
print
(
"
python3 benchmark_fdb.py --run_fdb --seed 1
\n
"
)
sys
.
exit
()
elif
opt
==
"
--run_fdb
"
:
run_fdb
=
True
elif
opt
==
"
--seed
"
:
seed
=
int
(
arg
)
else
:
pass
np
.
random
.
seed
(
seed
)
# Compute 'nrepeats' of fdb
nrepeats
=
30
if
run_fdb
:
# Save data in a dict
try
:
with
open
(
"
fdb.json
"
,
"
r
"
)
as
in_file
:
data
=
json
.
load
(
in_file
)
except
IOError
:
data
=
{}
M
=
np
.
power
(
2
,
np
.
arange
(
1
,
11
+
1
,
1
))
N
=
np
.
power
(
2
,
np
.
arange
(
1
,
11
+
1
,
1
))
n_factors
=
np
.
array
([
2
,
4
,
8
,
16
])
rank
=
1
backend
=
[
"
numpy
"
,
"
pytorch
"
]
elapsed_time
=
np
.
full
((
M
.
shape
[
0
],
N
.
shape
[
0
],
n_factors
.
shape
[
0
],
len
(
backend
)),
1e9
)
iqr
=
np
.
full
((
M
.
shape
[
0
],
N
.
shape
[
0
],
n_factors
.
shape
[
0
],
len
(
backend
)),
1e9
)
data
=
{}
for
m
in
M
:
# Save data to dict / json file
strr
=
"
{0:d}rows
"
.
format
(
m
,)
if
strr
not
in
data
.
keys
():
data
[
strr
]
=
{}
for
n
in
N
:
# Save data to dict / json file
strc
=
"
{0:d}columns
"
.
format
(
n
)
if
strc
not
in
data
[
strr
].
keys
():
data
[
strr
][
strc
]
=
{}
for
f
in
n_factors
:
strf
=
"
{0:d}factors
"
.
format
(
f
)
if
strf
not
in
data
[
strr
][
strc
].
keys
():
data
[
strr
][
strc
][
strf
]
=
{}
# Elapsed time
matrix0
=
torch
.
randn
(
m
,
n
)
matrix1
=
matrix0
.
numpy
()
for
j
in
range
(
len
(
backend
)):
if
backend
[
j
]
not
in
data
[
strr
][
strc
][
strf
].
keys
():
data
[
strr
][
strc
][
strf
][
backend
[
j
]]
=
[]
if
backend
[
j
]
==
'
numpy
'
:
matrix
=
np
.
random
.
randn
(
m
,
n
)
else
:
matrix
=
torch
.
randn
(
m
,
n
)
for
i
in
range
(
nrepeats
):
if
backend
[
j
]
==
'
pytorch
'
:
start
=
time
.
time
()
F
=
fact
.
fdb
(
matrix0
,
n_factors
=
f
,
rank
=
rank
,
backend
=
backend
[
j
])
end
=
time
.
time
()
if
backend
[
j
]
==
'
numpy
'
:
start
=
time
.
time
()
F
=
fact
.
fdb
(
matrix1
,
n_factors
=
f
,
rank
=
rank
,
backend
=
backend
[
j
])
end
=
time
.
time
()
print
(
"
{0:s}, repeat={1:d}, shape={2:d}x{3:d}, {4:d} factors, time={5:f}
"
.
format
(
backend
[
j
],
i
,
m
,
n
,
f
,
end
-
start
,
)
)
data
[
strr
][
strc
][
strf
][
backend
[
j
]].
append
(
end
-
start
)
tmp
=
np
.
array
(
data
[
strr
][
strc
][
strf
][
backend
[
j
]]
)
elapsed_time
[
argitem
(
M
,
m
),
argitem
(
N
,
n
),
argitem
(
n_factors
,
f
),
j
]
=
np
.
median
(
tmp
)
q75
,
q25
=
np
.
percentile
(
tmp
,
[
75
,
25
])
iqr
[
argitem
(
M
,
m
),
argitem
(
N
,
n
),
argitem
(
n_factors
,
f
),
j
]
=
q75
-
q25
del
matrix
,
tmp
# Clean
gc
.
collect
()
# Plot best backend
for
f
in
n_factors
:
fig
,
ax
=
plt
.
subplots
(
1
,
1
,
constrained_layout
=
False
)
for
m
in
M
:
for
n
in
N
:
times
=
np
.
array
(
elapsed_time
[
argitem
(
M
,
m
),
argitem
(
N
,
n
),
argitem
(
n_factors
,
f
),
:])
for
t
in
range
(
times
.
shape
[
0
]):
# Do not keep the median if it is greater than iqr / 10
if
iqr
[
argitem
(
M
,
m
),
argitem
(
N
,
n
),
argitem
(
n_factors
,
f
),
t
]
>
(
times
[
t
]
/
10.0
):
times
[
t
]
=
1e9
*
np
.
max
(
times
)
argsort
=
np
.
argsort
(
times
)
for
i
in
range
(
len
(
backend
)):
ax
.
plot
(
n
,
m
,
linestyle
=
""
,
marker
=
"
o
"
,
markersize
=
12.5
*
times
[
argsort
[
0
]]
/
times
[
argsort
[
i
]],
color
=
cmap
(
argsort
[
i
]
/
(
len
(
backend
)
-
1
)),
)
for
i
in
range
(
len
(
backend
)):
ax
.
plot
(
1e-1
,
1e-1
,
linestyle
=
""
,
marker
=
"
o
"
,
markersize
=
8.0
,
color
=
cmap
(
i
/
(
len
(
backend
)
-
1
)),
label
=
backend
[
i
],
)
ax
.
set_xlim
(
1
,
2
*
np
.
max
(
N
))
ax
.
set_xscale
(
"
log
"
)
ax
.
set_xlabel
(
"
# of columns
"
)
ax
.
set_ylim
(
1
,
10
*
np
.
max
(
M
))
ax
.
set_yscale
(
"
log
"
)
ax
.
set_ylabel
(
"
# of rows
"
)
ax
.
set_title
(
"
min(duration) / duration(backend)
"
)
ax
.
legend
(
title
=
"
backend
"
,
ncol
=
2
,
loc
=
"
upper left
"
,
columnspacing
=
1
*
0.25
,
handletextpad
=
4
*
0.01
)
plt
.
savefig
(
"
best_backend_fdb_{0:d}factors.png
"
.
format
(
f
),
dpi
=
600
)
fig
.
clf
(),
plt
.
close
()
# Save data to json file
with
open
(
"
fdb.json
"
,
"
w
"
)
as
out_file
:
json
.
dump
(
data
,
out_file
,
indent
=
1
)
if
__name__
==
"
__main__
"
:
main
(
sys
.
argv
[
1
:])
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment