Mentions légales du service

Skip to content
Snippets Groups Projects
Commit cd07405a authored by hhakim's avatar hhakim
Browse files

Integrate coverage badges and FAµST logo on pypi, readme and anaconda descriptions.

parent b02fbf50
Branches
Tags
No related merge requests found
Pipeline #845686 passed
[![pipeline status](https://gitlab.inria.fr/faustgrp/faust/badges/hakim_branch/pipeline.svg)](https://gitlab.inria.fr/faustgrp/faust/commits/hakim_branch)
![pyfaust test coverage](https://gitlab.inria.fr/faustgrp/faust/badges/hakim_branch/coverage.svg?job=pyfaust_test_code_coverage&key_text=pyfaustcov)
![matfaust test coverage](https://gitlab.inria.fr/faustgrp/faust/badges/hakim_branch/coverage.svg?job=matfaust_test_code_coverage&key_text=matfaustcov)
![FAµST Logo](./gen_doc/images/logo.png)
# FAuST Toolbox -- Flexible Approximate Multi-Layer Sparse Transform
......
......@@ -30,6 +30,10 @@ about:
license_file: @LICENSE_FILEPATH@
summary: 'FAµST python toolbox'
description: |
.. image:: https://faust.inria.fr/files/2016/11/cropped-FAUST.jpeg
.. image:: https://gitlab.inria.fr/faustgrp/faust/badges/hakim_branch/pipeline.svg
.. image:: https://gitlab.inria.fr/faustgrp/faust/badges/hakim_branch/coverage.svg?job=pyfaust_test_code_coverage&key_text=coverage
The FAµST toolbox provides algorithms and data structures to decompose a given dense matrix into a product of sparse matrices in order to reduce its computational complexity (both for storage and manipulation).
FaµST can be used to:
......@@ -37,4 +41,3 @@ about:
- learn dictionaries with an intrinsically efficient implementation,
- compute (approximate) fast Fourier transforms on graphs.
......@@ -71,7 +71,10 @@ setup(
author = 'INRIA',
author_email = 'remi.gribonval@inria.fr',
description = 'FAµST python toolbox',
long_description = """The FAµST toolbox provides algorithms and data structures to decompose a given dense matrix into a product of sparse matrices in order to reduce its computational complexity (both for storage and manipulation). FaµST can be used to:
long_description = """![FAµST logo](https://faust.inria.fr/files/2016/11/cropped-FAUST.jpeg)
![pipeline status](https://gitlab.inria.fr/faustgrp/faust/badges/main/pipeline.svg) ![coverage](https://gitlab.inria.fr/faustgrp/faust/badges/hakim_branch/coverage.svg?job=pyfaust_test_code_coverage&key_text=coverage)
The FAµST toolbox provides algorithms and data structures to decompose a given dense matrix into a product of sparse matrices in order to reduce its computational complexity (both for storage and manipulation). FaµST can be used to:
- speedup / reduce the memory footprint of iterative algorithms commonly used for solving high dimensional linear inverse problems,
......@@ -80,6 +83,7 @@ setup(
- compute (approximate) fast Fourier transforms on graphs.
""",
long_description_content_type='text/markdown',
classifiers = [ 'License :: OSI Approved :: BSD License',
'Programming Language :: Python :: 3',
@GPU_CUDA_VERSION_PYPI_CLASSIFIER@],
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment