%> @param 'numits', int the fixed number of iterations of the algorithm. By default the value is DEFAULT_NUMITS. If arguments num_its and tol are used together only the last one in the argument list is taken into account.
%> @param 'tol', real error target according to the algorithm is stopped. If arguments num_its and tol are used together only the last one in the argument list is taken into account.
%> @param 'maxiter', int the maximum number of iterations to run the algorithm, whatever is the criterion used (tol or num_its).
%> @param 'relerr', bool false to define a absolute error with tol, true for a relative error
%> (in this case the 'relmat' matrix will be used to convert internally the given 'tol' to the corresponding absolute error).
%> @param 'relmat', matrix the matrix against which is defined the relative error. if relerr is True, this argument is mandatory.
%>
%> @b Example:
%> @code
%>>> import matfaust.factparams.StoppingCriterion
%>>> s = StoppingCriterion(5)
%>num_its 5:
%>maxiter 10000:
%>>> s = StoppingCriterion(.5)
%>tol: 0.500000
%>relerr: 0
%>maxiter: 10000
%>>> s = StoppingCriterion('tol', .5)
%>tol: 0.500000
%>relerr: 0
%>maxiter: 10000
%>>> s = StoppingCriterion('numits', 5)
%>num_its 500:
%>maxiter 10000:
%>>> s = StoppingCriterion('tol', .2, 'relerr', true, 'relmat', rand(10,10))