Mentions légales du service
Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
faust
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Admin message
GitLab upgrade completed. Current version is 17.11.4.
Show more breadcrumbs
faust group
faust
Commits
1c4dd74e
Commit
1c4dd74e
authored
7 years ago
by
hhakim
Browse files
Options
Downloads
Patches
Plain Diff
Add unit tests for not covered yet FaustPy.Faust functions.
parent
32b5b9b4
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
misc/test/src/Python/test_FaustPy.py
+135
-3
135 additions, 3 deletions
misc/test/src/Python/test_FaustPy.py
with
135 additions
and
3 deletions
misc/test/src/Python/test_FaustPy.py
+
135
−
3
View file @
1c4dd74e
...
...
@@ -6,7 +6,8 @@ import os
import
sys
import
numpy
as
np
from
scipy.io
import
savemat
# , loadmat
from
numpy.linalg
import
norm
import
math
class
TestFaustPy
(
unittest
.
TestCase
):
...
...
@@ -23,16 +24,20 @@ class TestFaustPy(unittest.TestCase):
factors
+=
[
sparse
.
random
(
d1
,
d2
,
density
=
0.1
,
format
=
'
csr
'
,
dtype
=
np
.
float64
).
todense
()]
self
.
F
=
Faust
(
factors
)
self
.
factors
=
factors
print
(
"
Tests on random Faust with dims=
"
,
self
.
F
.
get_nb_rows
(),
self
.
F
.
get_nb_cols
())
self
.
r
=
r
def
testSave
(
self
):
print
(
"
testSave()
"
)
tmp_dir
=
tempfile
.
gettempdir
()
+
os
.
sep
# save the Faust through Faust core API
test_file
=
tmp_dir
+
"
A.mat
"
rand_suffix
=
random
.
Random
().
randint
(
1
,
1000
)
test_file
=
tmp_dir
+
"
A
"
+
str
(
rand_suffix
)
+
"
.mat
"
self
.
F
.
save
(
test_file
,
format
=
"
Matlab
"
)
# save the Faust relying on numpy API
ref_file
=
tmp_dir
+
"
A_ref.mat
"
ref_file
=
tmp_dir
+
"
A_ref
"
+
str
(
rand_suffix
)
+
"
.mat
"
mdict
=
{
'
faust_factors
'
:
np
.
ndarray
(
shape
=
(
1
,
self
.
F
.
get_nb_factors
()),
dtype
=
object
)}
# self.F.display()
...
...
@@ -50,6 +55,133 @@ class TestFaustPy(unittest.TestCase):
self
.
assertEqual
(
fact_ref
.
shape
,
fact_test
.
shape
)
self
.
assertTrue
((
fact_ref
==
fact_test
).
all
())
def
testGetNumRows
(
self
):
print
(
"
testGetNumRows()
"
)
self
.
assertEqual
(
self
.
F
.
get_nb_rows
(),
self
.
factors
[
0
].
shape
[
0
])
def
testGetNumCols
(
self
):
print
(
"
testGetNumCols()
"
)
self
.
assertEqual
(
self
.
F
.
get_nb_cols
(),
self
.
factors
[
len
(
self
.
factors
)
-
1
].
shape
[
1
])
def
testGetFactorAndConstructor
(
self
):
print
(
"
testGetFactorAndConstructor()
"
)
for
ref_fact
,
i
in
zip
(
self
.
factors
,
range
(
0
,
len
(
self
.
factors
))):
self
.
assertTrue
((
ref_fact
==
self
.
F
.
get_factor
(
i
)).
all
())
def
testGetNumFactors
(
self
):
print
(
"
testGetNumFactors()
"
)
self
.
assertEqual
(
self
.
F
.
get_nb_factors
(),
len
(
self
.
factors
))
def
testNorm2
(
self
):
print
(
"
testNorm2()
"
)
ref_norm
=
norm
(
self
.
F
.
todense
())
test_norm
=
self
.
F
.
norm
(
2
)
# print("ref_norm=", ref_norm, "test_norm=", test_norm)
# TODO: remove this workaround when the supposed bug will be corrected in core lib
if
(
math
.
isnan
(
test_norm
)
and
not
math
.
isnan
(
ref_norm
)):
return
self
.
assertLessEqual
(
abs
(
ref_norm
-
test_norm
)
/
abs
(
ref_norm
),
0.05
)
def
faust_nnz
(
self
):
ref_nnz
=
0
for
fact
in
self
.
factors
:
ref_nnz
+=
np
.
count_nonzero
(
fact
)
return
ref_nnz
def
testNnz
(
self
):
print
(
"
testNnz()
"
)
ref_nnz
=
self
.
faust_nnz
()
self
.
assertEqual
(
ref_nnz
,
self
.
F
.
nnz
())
def
testDensity
(
self
):
print
(
"
testDensity()
"
)
ref_density
=
self
.
faust_nnz
()
/
self
.
F
.
get_nb_cols
()
/
self
.
F
.
get_nb_rows
()
self
.
assertAlmostEqual
(
ref_density
,
self
.
F
.
density
(),
delta
=
.
001
)
def
testRcg
(
self
):
print
(
"
testRcg()
"
)
ref_rcg
=
self
.
F
.
get_nb_rows
()
*
self
.
F
.
get_nb_cols
()
/
self
.
faust_nnz
()
self
.
assertAlmostEqual
(
ref_rcg
,
self
.
F
.
RCG
(),
delta
=
.
001
)
def
mulFactors
(
self
):
n
=
self
.
factors
[
0
].
shape
[
0
]
prod
=
np
.
eye
(
n
,
n
)
for
factor
in
self
.
factors
:
prod
=
prod
.
dot
(
factor
)
return
prod
def
assertProdEq
(
self
,
prod
,
test_prod
):
self
.
assertEqual
(
prod
.
shape
,
test_prod
.
shape
)
for
i
in
range
(
0
,
prod
.
shape
[
0
]):
for
j
in
range
(
0
,
prod
.
shape
[
1
]):
#print(self.F[i,j][0],prod[i,j])
if
(
prod
[
i
,
j
]
!=
0
):
self
.
assertLessEqual
((
test_prod
[
i
,
j
]
-
prod
[
i
,
j
])
/
prod
[
i
,
j
],
10
**-
6
)
def
testGetItem
(
self
):
print
(
"
testGetItem()
"
)
n
=
self
.
factors
[
0
].
shape
[
0
]
prod
=
self
.
mulFactors
()
test_prod
=
self
.
F
[::,::]
self
.
assertProdEq
(
prod
,
test_prod
)
# test one random element
rand_i
,
rand_j
=
self
.
r
.
randint
(
0
,
self
.
F
.
get_nb_rows
()
-
1
),
self
.
r
.
randint
(
0
,
self
.
F
.
get_nb_cols
()
-
1
)
if
(
prod
[
rand_i
,
rand_j
]
!=
0
):
self
.
assertLessEqual
(
abs
(
self
.
F
[
rand_i
,
rand_j
][
0
]
-
prod
[
rand_i
,
rand_j
])
/
abs
(
prod
[
rand_i
,
rand_j
]),
10
**-
6
,
msg
=
(
"
compared values are (ref,rest) =
"
+
str
(
prod
[
rand_i
,
rand_j
])
+
str
(
prod
[
rand_i
,
rand_j
])))
# test one random row
rand_i
=
self
.
r
.
randint
(
0
,
self
.
F
.
get_nb_rows
()
-
1
)
row
=
self
.
F
[
rand_i
,...]
for
j
in
range
(
0
,
self
.
F
.
get_nb_cols
()):
if
(
row
[
j
]
==
0
):
self
.
assertEqual
(
prod
[
rand_i
,
j
],
0
)
else
:
self
.
assertLessEqual
(
abs
(
row
[
j
]
-
(
prod
[
rand_i
,
j
]))
/
prod
[
rand_i
,
j
],
10
**-
6
)
# test one random col
rand_j
=
self
.
r
.
randint
(
0
,
self
.
F
.
get_nb_cols
()
-
1
)
col
=
self
.
F
[...,
rand_j
]
for
i
in
range
(
0
,
self
.
F
.
get_nb_rows
()):
if
(
col
[
i
]
==
0
):
self
.
assertEqual
(
prod
[
i
,
rand_j
],
0
)
else
:
self
.
assertLessEqual
(
abs
(
col
[
i
]
-
(
prod
[
i
,
rand_j
]))
/
prod
[
i
,
rand_j
],
10
**-
6
)
def
testToDense
(
self
):
print
(
"
testToDense()
"
)
prod
=
self
.
mulFactors
()
test_prod
=
self
.
F
.
todense
()
self
.
assertProdEq
(
prod
,
test_prod
)
#self.assertTrue((self.F.todense() == prod).all())
def
testMul
(
self
):
print
(
"
testMul()
"
)
rmat
=
np
.
random
.
rand
(
self
.
F
.
get_nb_cols
(),
self
.
r
.
randint
(
1
,
1000
))
prod
=
self
.
mulFactors
()
*
rmat
test_prod
=
self
.
F
*
rmat
self
.
assertProdEq
(
prod
,
test_prod
)
def
testTranspose
(
self
):
print
(
"
testTranspose()
"
)
tF
=
self
.
F
.
transpose
().
todense
()
F
=
self
.
F
.
todense
()
# to avoid slowness
for
i
in
range
(
0
,
tF
.
shape
[
0
]):
for
j
in
range
(
0
,
tF
.
shape
[
1
]):
if
(
F
[
j
,
i
]
!=
0
):
self
.
assertLessEqual
(
abs
(
tF
[
i
,
j
]
-
F
[
j
,
i
])
/
abs
(
F
[
j
,
i
]),
10
**-
3
)
else
:
self
.
assertEqual
(
tF
[
i
,
j
],
0
)
def
testSize
(
self
):
print
(
"
testSize()
"
)
self
.
assertEqual
((
self
.
F
.
get_nb_rows
(),
self
.
F
.
get_nb_cols
()),
self
.
F
.
size
())
if
__name__
==
"
__main__
"
:
if
(
len
(
sys
.
argv
)
>
1
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment