Mentions légales du service

Skip to content
Snippets Groups Projects
Commit 11b8ddcd authored by hhakim's avatar hhakim
Browse files

Update matfaust.circ/anticirc/toeplitz API docs.

parent b1663611
No related branches found
No related tags found
No related merge requests found
......@@ -6,21 +6,19 @@
%> @code
%> % in a matlab terminal
%> >> import matfaust.anticirc
%> >> c = rand(1, 8);
%> >> c = 1:8;
%> >> A = anticirc(c)
%> @endcode
%>
%> A =
%>
%> Faust size 8x8, density 1.75, nnz_sum 112, 8 factor(s):
%> Faust size 8x8, density 1.5, nnz_sum 96, 6 factor(s):
%> - FACTOR 0 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 1 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 2 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 3 (complex) SPARSE, size 8x8, density 0.125, nnz 8
%> - FACTOR 4 (complex) SPARSE, size 8x8, density 0.125, nnz 8
%> - FACTOR 3 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 4 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 5 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 6 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 7 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%>
%> @code
%> >> full_A = full(A);
......@@ -32,24 +30,23 @@
%>
%> 1
%>
%> >> c
%>
%> c =
%>
%> 0.0046 0.7749 0.8173 0.8687 0.0844 0.3998 0.2599 0.8001
%>
%> >> real(full_A)
%>
%> ans =
%>
%> 0.7749 0.8173 0.8687 0.0844 0.3998 0.2599 0.8001 0.0046
%> 0.8173 0.8687 0.0844 0.3998 0.2599 0.8001 0.0046 0.7749
%> 0.8687 0.0844 0.3998 0.2599 0.8001 0.0046 0.7749 0.8173
%> 0.0844 0.3998 0.2599 0.8001 0.0046 0.7749 0.8173 0.8687
%> 0.3998 0.2599 0.8001 0.0046 0.7749 0.8173 0.8687 0.0844
%> 0.2599 0.8001 0.0046 0.7749 0.8173 0.8687 0.0844 0.3998
%> 0.8001 0.0046 0.7749 0.8173 0.8687 0.0844 0.3998 0.2599
%> 0.0046 0.7749 0.8173 0.8687 0.0844 0.3998 0.2599 0.8001
%> 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 1.0000
%> 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 1.0000 2.0000
%> 4.0000 5.0000 6.0000 7.0000 8.0000 1.0000 2.0000 3.0000
%> 5.0000 6.0000 7.0000 8.0000 1.0000 2.0000 3.0000 4.0000
%> 6.0000 7.0000 8.0000 1.0000 2.0000 3.0000 4.0000 5.0000
%> 7.0000 8.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000
%> 8.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000
%> 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000
%> >> % Look at the density of a larger anticirculant Faust
%> >> % it indicates a speedup of the Faust-matrix/vector product
%> >> density(anticirc(rand(1, 1024)))
%> 0.0391
%> @endcode
%>
%> @b See also matfaust.circ, matfaust.toeplitz
......
......@@ -5,21 +5,19 @@
%>
%> @code
%> >> import matfaust.circ
%> >> c = rand(1, 8);
%> >> c = 1:8;
%> >> C = circ(c)
%> @endcode
%>
%> C =
%>
%> Faust size 8x8, density 1.75, nnz_sum 112, 8 factor(s):
%> Faust size 8x8, density 1.5, nnz_sum 96, 6 factor(s):
%> - FACTOR 0 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 1 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 2 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 3 (complex) SPARSE, size 8x8, density 0.125, nnz 8
%> - FACTOR 4 (complex) SPARSE, size 8x8, density 0.125, nnz 8
%> - FACTOR 3 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 4 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 5 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 6 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%> - FACTOR 7 (complex) SPARSE, size 8x8, density 0.25, nnz 16
%>
%> @code
%> >> full_C = full(C);
......@@ -31,27 +29,26 @@
%>
%> 1
%>
%> >> c
%>
%> c =
%>
%> 0.2630 0.6541 0.6892 0.7482 0.4505 0.0838 0.2290
%> 0.9133
%>
%> >> real(full_C)
%>
%> ans =
%>
%> 0.2630 0.9133 0.2290 0.0838 0.4505 0.7482 0.6892 0.6541
%> 0.6541 0.2630 0.9133 0.2290 0.0838 0.4505 0.7482 0.6892
%> 0.6892 0.6541 0.2630 0.9133 0.2290 0.0838 0.4505 0.7482
%> 0.7482 0.6892 0.6541 0.2630 0.9133 0.2290 0.0838 0.4505
%> 0.4505 0.7482 0.6892 0.6541 0.2630 0.9133 0.2290 0.0838
%> 0.0838 0.4505 0.7482 0.6892 0.6541 0.2630 0.9133 0.2290
%> 0.2290 0.0838 0.4505 0.7482 0.6892 0.6541 0.2630 0.9133
%> 0.9133 0.2290 0.0838 0.4505 0.7482 0.6892 0.6541 0.2630
%> 1.0000 8.0000 7.0000 6.0000 5.0000 4.0000 3.0000 2.0000
%> 2.0000 1.0000 8.0000 7.0000 6.0000 5.0000 4.0000 3.0000
%> 3.0000 2.0000 1.0000 8.0000 7.0000 6.0000 5.0000 4.0000
%> 4.0000 3.0000 2.0000 1.0000 8.0000 7.0000 6.0000 5.0000
%> 5.0000 4.0000 3.0000 2.0000 1.0000 8.0000 7.0000 6.0000
%> 6.0000 5.0000 4.0000 3.0000 2.0000 1.0000 8.0000 7.0000
%> 7.0000 6.0000 5.0000 4.0000 3.0000 2.0000 1.0000 8.0000
%> 8.0000 7.0000 6.0000 5.0000 4.0000 3.0000 2.0000 1.0000
%>
%> >> % Look at the density of a larger circulant Faust
%> >> % it indicates a speedup of the Faust-matrix/vector product
%> >> density(circ(rand(1, 1024)))
%> 0.0391
%> @endcode
%>
%>
%> @b See also matfaust.anticirc, matfaust.toeplitz
%==========================================================================================
function C = circ(c)
......
%=========================================
%> @brief Returns a toeplitz Faust whose the first column is c and the first row r.
%> @brief Returns a toeplitz Faust whose first column is c and first row r.
%>
%> @b Usage
%>
%> &nbsp;&nbsp;&nbsp; @b T = toeplitz(c), T is a symmetric Toeplitz Faust whose the first column is c. <br/>
%> &nbsp;&nbsp;&nbsp; @b T = toeplitz(c, r), T is a Toeplitz Faust whose the first column is c and the first row is [c(1), r(2:)] <br/>
%> @param c: the first column of the toeplitz Faust.
%> @param r: (2nd argument) the first row of the toeplitz Faust. Defaulty r = c.
%> r(1) is ignored, the first row is always [c(1),
%> r(2:)].
%> r(1) is ignored, the first row is always [c(1), r(2:)].
%>
%>
%> @b Example
%>
%> @code
%> % in a matlab terminal
%> >> c = rand(1, 10);
%> >> import matfaust.toeplitz
%> >> c = 1:10;
%> >> T = toeplitz(c)
%>
%> T =
%> @endcode
%>
%> Faust size 10x10, density 6.16, nnz_sum 616, 12 factor(s):
%> - FACTOR 0 (complex) SPARSE, size 10x32, density 0.0625, nnz 20
%> - FACTOR 1 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 2 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 3 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 4 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 5 (complex) SPARSE, size 32x32, density 0.03125, nnz 32
%> - FACTOR 6 (complex) SPARSE, size 32x32, density 0.03125, nnz 32
%> - FACTOR 7 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 8 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 9 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 10 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 11 (complex) SPARSE, size 32x10, density 0.0625, nnz 20
%> Faust size 10x10, density 5.52, nnz_sum 552, 10 factor(s):
%> - FACTOR 0 (complex) SPARSE, size 10x32, density 0.0625, nnz 20, addr: 0x7f278c6aec20
%> - FACTOR 1 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278ded1440
%> - FACTOR 2 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278defd560
%> - FACTOR 3 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278f687dc0
%> - FACTOR 4 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f27899a94d0
%> - FACTOR 5 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f2724d04e30
%> - FACTOR 6 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278deb8fb0
%> - FACTOR 7 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278f69e8f0
%> - FACTOR 8 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278ded1840
%> - FACTOR 9 (complex) SPARSE, size 32x10, density 0.0625, nnz 20, addr: 0x7f278c6b2070
%>
%> @code
%> >> full_T = full(T);
......@@ -56,25 +53,23 @@
%> @endcode
%>
%> @code
%> >> r = rand(1, 10);
%> >> r = 11:20;
%> >> T2 = toeplitz(c, r)
%> @endcode
%>
%> T2 =
%>
%> Faust size 10x10, density 6.16, nnz_sum 616, 12 factor(s):
%> - FACTOR 0 (complex) SPARSE, size 10x32, density 0.0625, nnz 20
%> - FACTOR 1 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 2 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 3 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 4 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 5 (complex) SPARSE, size 32x32, density 0.03125, nnz 32
%> - FACTOR 6 (complex) SPARSE, size 32x32, density 0.03125, nnz 32
%> - FACTOR 7 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 8 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 9 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 10 (complex) SPARSE, size 32x32, density 0.0625, nnz 64
%> - FACTOR 11 (complex) SPARSE, size 32x10, density 0.0625, nnz 20
%> Faust size 10x10, density 5.52, nnz_sum 552, 10 factor(s):
%> - FACTOR 0 (complex) SPARSE, size 10x32, density 0.0625, nnz 20, addr: 0x7f278dee2640
%> - FACTOR 1 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278c694ff0
%> - FACTOR 2 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278debd710
%> - FACTOR 3 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278deb5e70
%> - FACTOR 4 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278c6dc0d0
%> - FACTOR 5 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278decd230
%> - FACTOR 6 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278deb44a0
%> - FACTOR 7 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278dee9c00
%> - FACTOR 8 (complex) SPARSE, size 32x32, density 0.0625, nnz 64, addr: 0x7f278deb6090
%> - FACTOR 9 (complex) SPARSE, size 32x10, density 0.0625, nnz 20, addr: 0x7f278c682e60
%>
%> @code
%> >> full_T2 = full(T2);
......@@ -86,15 +81,20 @@
%>
%> 1
%>
%> >> all(full_T2(:, 1).' - c < 1e-15)
%> >> all(full_T2(:, 1).' - c < 1e-14)
%>
%> ans =
%>
%> logical
%>
%> 1
%> >> % Look at the density of a larger toeplitz Faust
%> >> % it indicates a speedup of the Faust-matrix/vector product
%> >> density(toeplitz(rand(1, 1024)))
%> 0.0820
%> @endcode
%>
%>
%> @b See also matfaust.circ, matfaust.anticirc
%=========================================
function T = toeplitz(c, varargin)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment