Newer
Older
# Copyright CNRS/Inria/UNS
# Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
import pandas as pd_
import numpy as np_
import matplotlib.pyplot as pl_
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import scipy as si_
import seaborn as sb_
NADAL Morgane
committed
import os
import glob
def KmeansOnDF(df: pd_.DataFrame(),
nb_clusters: tuple,
representation: bool = False,
labeled_somas=None,
elbow: bool = False,
intracluster_var: bool = True,
) -> KMeans:
'''
Perform kmeans on the pandas dataframe. Can find the best number of cluster with elbow method,
find the intracluster variance, and represent the result on the initial images.
Returns kmeans.
'''
# Data standardization
scaler = StandardScaler()
scaler.fit(df)
stand_df = scaler.transform(df)
# Best number of clusters using Elbow method
if elbow:
wcss = [] # within cluster sum of errors(wcss)
for i in range(1, 24):
kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
kmeans.fit(stand_df)
wcss.append(kmeans.inertia_)
pl_.plot(range(1, 24), wcss)
pl_.plot(range(1, 24), wcss, 'bo')
pl_.title('Elbow Method')
pl_.xlabel('Number of clusters')
pl_.ylabel('WCSS')
pl_.show(block=True)
pl_.close()
NADAL Morgane
committed
# Kmeans with x clusters
for nb_cluster in nb_clusters:
kmeans = KMeans(n_clusters=nb_cluster, init='k-means++', max_iter=300, n_init=10, random_state=0)
pred_y = kmeans.fit_predict(stand_df)
# Intracluster variance
if intracluster_var:
var = IntraClusterVariance(df, kmeans, nb_cluster)
NADAL Morgane
committed
if representation:
RepresentationOnImages(labeled_somas, kmeans, nb_cluster)
return kmeans
def IntraClusterVariance(df: pd_.DataFrame(), kmeans: KMeans(), nb_cluster: int) -> list:
'''
Return the intracluster variance of a given cluster found by kmeans.
'''
var = []
for cluster in range(nb_cluster):
soma_cluster = [indx + 1 for indx, value in enumerate(kmeans.labels_) if value == cluster]
mean_cluster = np_.average([df.loc[f"soma {row}", :] for row in soma_cluster], axis=0)
variance = sum([np_.linalg.norm(df.loc[f"soma {row}", :] - mean_cluster) ** 2 for row in soma_cluster]) / len(
soma_cluster)
var.append(variance)
print(f"Intracluster variance for {nb_cluster} clusters :", var)
return var
NADAL Morgane
committed
def RepresentationOnImages(labeled_somas, kmeans, nb_cluster):
'''
Represent the result of kmeans on labeled image. IN DVPT. Only available for a kmean intra-image.
'''
NADAL Morgane
committed
clustered_somas = labeled_somas.copy()
clustered_somas = np_.amax(clustered_somas, axis=0)
for indx, value in enumerate(kmeans.labels_):
for indx_axe, axe in enumerate(clustered_somas):
for indx_pixel, pixel in enumerate(axe):
if pixel == indx + 1:
clustered_somas[indx_axe][indx_pixel] = value + 1
pl_.imshow(clustered_somas, cmap="tab20")
pl_.title(f"n cluster = {nb_cluster}")
pl_.show(block=True)
pl_.close()
def FeaturesStatistics(df):
'''
Return the statistics allowing the user to choose the most relevant features to feed ML algorithms for ex.
'''
# Overview of the basic stats on each columns of df
df.describe()
# Overview of features distribution and correlation
sb_.pairplot(df, kind='reg')
sb_.pairplot(df, kind='reg', hue='Condition')
# Statistics for each features
for column in df.columns:
print(column)
hist = df[column].hist(bins=20)
pl_.title(f"{column}")
pl_.savefig(f"D:\\MorganeNadal\\M2 report\\kmeans24\\feat_distrib_{column}.png")
pl_.close()
def PCAOnDF(df: pd_.DataFrame(),
target: str,
targets: List[str],
colors: List[str],
save_name: str = None,
title: str = ""
) -> list:
'''
Perform 2D PCA on the CHO-DIO dataframe.
Print ratio variance and plot the PCA.
'''
# Separating the features from their conditions and durations
# all_target = df.loc[:, [target]].values
df_all = df.drop([target], axis=1)
# Standardize the data
scaler = StandardScaler()
pca = PCA(n_components=2)
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
principal_components = pca.fit_transform(stand_df)
print(f"PCA explained variance ratio ({save_name}): ", pca.explained_variance_ratio_)
principal_df = pd_.DataFrame(data=principal_components, columns=['principal component 1', 'principal component 2'])
# Give the final df containing the principal component and their condition
final_df = pd_.concat([principal_df, df[target]], axis=1)
# Plot
fig = pl_.figure(figsize=(8, 8))
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel('Principal Component 1', fontsize=15)
ax.set_ylabel('Principal Component 2', fontsize=15)
ax.set_title(f'2 component PCA{title}', fontsize=20)
for tgt, color in zip(targets, colors):
idx = final_df[target] == tgt
ax.scatter(final_df.loc[idx, 'principal component 1']
, final_df.loc[idx, 'principal component 2']
, c=color
, s=30)
ax.legend(targets)
ax.grid()
if save_name is not None:
pl_.savefig(f"D:\\MorganeNadal\\2_RESULTS\\Results_wo_erosion\\Features_analysis\\PCA_{save_name}.png")
return pca.explained_variance_ratio_
if __name__ == "__main__":
#
# os.chdir("D:\\MorganeNadal\\2_RESULTS\\Results_wo_erosion")
## If need to concatenate files:
# all_filenames = [i for i in glob.glob('*.{}'.format("csv"))]
# print(all_filenames)
# df = pd_.concat([pd_.read_csv(f, index_col=0) for f in all_filenames])
# df.to_csv(".\combined_features.csv")
## If use labeled somas:
# labeled_somas = np_.load("D:\\MorganeNadal\\Results\\labeled_somas.npy")
# df = pd_.read_csv(".\combined_features.csv", index_col=0)
df0 = pd_.read_csv("D:\\MorganeNadal\\2_RESULTS\\Results_wo_erosion\\all_features.csv",
# index_col=0,
)
df = df0.drop(["Unnamed: 0"], axis=1)
# Statistical analysis
# For the moment drop the columns with non scalar values, and un-useful values
# - TO BE CHANGED (use distance metrics such as bhattacharyya coef, etc)
df = df.drop(["soma uid",
"spherical_angles_eva", "spherical_angles_evb",
"hist_lengths", "hist_lengths_P", "hist_lengths_S",
"hist_curvature", "hist_curvature_P", "hist_curvature_S"],
axis=1)
df = df.dropna(axis=0, how="any")
# KMeansIntraImage(df, nb_clusters=(2,))
# FeatureDistribution(df)
# -- PCA with all the features
# Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
df_all = df.drop(["duration"], axis=1)
all_pca = PCAOnDF(df_all, target="condition", targets=["CHO", "DIO"], colors=["b", "r"], save_name="all_features")
# Between the two conditions, for each duration (2 conditions, 3 durations)
groupby_duration = df.groupby("duration")
duration_pca = []
for duration, values in groupby_duration:
# print(duration, values.shape)
# groupby_condition = values.groupby("condition")
# for cond, val in groupby_condition:
# print(cond, val.shape)
## duration: str, values: pd_.DataFrame()
duration_df = values.drop(["duration"], axis=1)
pca = PCAOnDF(duration_df,
target="condition",
targets=["CHO", "DIO"],
colors=["b", "r"],
save_name=f"{duration}_features",
title=f" - {duration} Sample")
duration_pca.append(pca)
## -- K-means with all the features (2 conditions)
## Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# kmeans = fa_.KmeansOnDF(concatenated_features_df, nb_clusters=(2,), elbow=True, intracluster_var=True)
## Between the two conditions, for each duration (2 conditions, 3 durations)
# for duration, values in groupby_duration:
# kmeans = fa_.KmeansOnDF(values, nb_clusters=(2,), elbow=True, intracluster_var=True)
## -- Select Discriminant features by statistical analysis
# TODO filtered_df = SelectFeatures(concatenated_features_df)
## -- PCA with all the features with the cluster as label
## Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# TODO pca = fa_.PCAOnDF(concatenated_features_df)
## Between the two conditions, for each duration (2 conditions, 3 durations)
# for duration, values in groupby_duration:
# pca = fa_.PCAOnDF(values)
## -- Select Discriminant features by statistical analysis
# TODO filtered_df = SelectFeatures(concatenated_features_df)
## -- PCA with selected features
## Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# TODO pca = fa_.PCAOnDF(filtered_df)
## Between the two conditions, for each duration (2 conditions, 3 durations)
# filtered_groupby_duration = filtered_df.groupby("Duration")
# for duration, values in filtered_groupby_duration:
# pca = fa_.PCAOnDF(values)
## -- K-means with selected features
## Between the two conditions, regardless the duration of experiment (2 conditions, all durations)
# filtered_kmeans = fa_.KmeansOnDF(filtered_df, nb_clusters=(2,), elbow=True, intracluster_var=True)
## Between the two conditions, for each duration (2 conditions, 3 durations)
# for duration, values in filtered_groupby_duration:
# filtered_kmeans = fa_.KmeansOnDF(values, nb_clusters=(2,), elbow=True, intracluster_var=True)