Newer
Older
# Copyright CNRS/Inria/UNS
# Contributor(s): Eric Debreuve (since 2018)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
import matplotlib as mpl_
NADAL Morgane
committed
from sklgraph.skl_fgraph import skl_graph_t
from sklgraph.skl_graph import plot_mode_e
from sklgraph.skl_map import skl_map_t
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import pathlib as ph_
import sys as sy_
import tempfile as tf_
import matplotlib.pyplot as pl_
import numpy as np_
import scipy.ndimage as im_
import skimage.measure as ms_
# import sknw as sk_
# --- Set main parameters
if sy_.argv.__len__() == 1:
print("Call with arguments: horse|bug|2d|3d [noplot]")
sy_.exit(0)
data = sy_.argv[1]
print(data)
test_mode = (sy_.argv.__len__() > 2) and (sy_.argv[2] == "noplot")
space_dim = None
# --- Generation of a (random) object map
if data == "horse":
import skimage.data as sd_
import skimage.util as su_
obj_map = su_.invert(sd_.horse())
space_dim = 2
#
elif data == "bug":
bug_path = ph_.Path(__file__).parent
bug_path = bug_path / ".." / "dev" / "__usecases__" / "obj_map.npz"
if bug_path.is_file():
obj_map = np_.load(bug_path)["obj_map"]
space_dim = obj_map.ndim
else:
raise FileNotFoundError(bug_path)
#
else:
if data == "2d":
space_dim = 2
array_shape = (100, 100)
threshold_fct = lambda img: img.median()
struct_elm_shape = (3, 3)
elif data == "3d":
space_dim = 3
array_shape = (80, 80, 50)
threshold_fct = lambda img: 0.75 * image.max()
struct_elm_shape = (3, 3, 3)
else:
raise ValueError(f"{data}: Unknown data specification")
tmp_folder = None
with tf_.NamedTemporaryFile() as doc_accessor:
doc_name = ph_.Path(doc_accessor.name)
tmp_folder = doc_name.parents[0]
if tmp_folder is not None:
seed_lock = tmp_folder.joinpath("skl_graph_demo_seed.lock")
if not seed_lock.exists():
np_.random.seed(0)
seed_lock.touch()
image = np_.random.random(array_shape)
image = im_.gaussian_filter(image, 1)
multi_map = image > threshold_fct(image)
lbl_multi_map, _ = im_.label(
multi_map,
structure=np_.ones(struct_elm_shape, dtype=np_.uint8),
output=np_.uint,
)
cc_props = ms_.regionprops(lbl_multi_map)
largest_cc_idx = np_.argmax([cc_prop.area for cc_prop in cc_props]).item()
lbl_multi_map[lbl_multi_map != cc_props[largest_cc_idx].label] = 0
obj_map = lbl_multi_map > 0
# --- From object map to skeleton graph
np_.savez_compressed(".\\obj_map", obj_map=obj_map)
skeleton = skl_map_t.FromShapeMap(obj_map, store_widths=True)
skel_graph = skl_graph_t.FromSkeleton(skeleton)
# sknw_graph = sk_.build_sknw(skeleton.map)
# print(dir(sknw_graph))
# --- Some info about the skeleton graph
print(
f"Obj map area={np_.count_nonzero(obj_map)}\n\n"
f"Validity={skel_graph.is_valid}\n\n"
f"N nodes={skel_graph.n_nodes}\n"
f"N edges={skel_graph.n_edges}\n"
f"Highest degree={skel_graph.highest_degree}/{skel_graph.highest_degree_w_nodes}\n\n"
f"Length={skel_graph.length}<-{skel_graph.edge_lengths}\n"
f"Width=Hom.{skel_graph.reduced_width()}/Het.{skel_graph.heterogeneous_reduced_width()}<-{skel_graph.edge_reduced_widths()}\n"
f"Area as WxL={skel_graph.reduced_width() * skel_graph.length}\n"
f"Area as WW Length={skel_graph.ww_length}<-{skel_graph.edge_ww_lengths}\n"
)
# --- No display is testing
if test_mode:
sy_.exit(0)
# --- Checking correctness of skeleton graph via various rebuilt maps
rebuilt_skel = skel_graph.RebuiltSkeletonMap()
part_map_for_check = skeleton.PartMap()
# Keep next line before its next one
part_map_for_check[part_map_for_check == skeleton.invalid_n_neighbors] = 0
part_map_for_check[part_map_for_check > 3] = 3
print(
f"Rebuilt skeleton = Original one? Part map? "
f"{np_.array_equal(rebuilt_skel > 0, skeleton.map)} "
f"{np_.array_equal(rebuilt_skel, part_map_for_check)}"
)
if space_dim == 3:
rebuilt_skel = rebuilt_skel.max(axis=2)
# --- Checking correctness of skeleton graph via rebuilt object map
obj_map = obj_map.astype(np_.uint8)
rebuilt_map = skel_graph.RebuiltObjectMap()
if space_dim == 3:
obj_map = obj_map.max(axis=2)
rebuilt_map = rebuilt_map.max(axis=2)
# --- Show various images and plot the skeleton graph
___, axes = pl_.subplots(1, 3)
axes[0].matshow(obj_map)
axes[1].matshow(rebuilt_map)
axes[2].matshow(obj_map - rebuilt_map)
axes[0].set_title("Object")
axes[1].set_title("Rebuilt")
axes[2].set_title("Object - Rebuilt")
for axis in axes:
axis.set_axis_off()
pl_.tight_layout(pad=0.3)
___, axes = pl_.subplots(1, 3)
axes[0].matshow(rebuilt_skel + obj_map)
axes[1].matshow(rebuilt_skel + rebuilt_map)
axes[2].matshow(rebuilt_skel)
axes[0].set_title("Rebuilt Skel Over Obj")
axes[1].set_title("Rebuilt Skel Over Rebuilt Obj")
axes[2].set_title("Rebuilt Skel")
for axis in axes:
axis.set_axis_off()
pl_.tight_layout(pad=0.3)
if space_dim == 2:
skel_graph.Plot(mode=plot_mode_e.Networkx, should_block=False)
skel_graph.Plot(mode=plot_mode_e.Graphviz, should_block=False)
skel_graph.Plot(mode=plot_mode_e.SKL_Curve, w_directions=True, should_block=False)
skel_graph.Plot(should_block=False)
# From: https://github.com/Image-Py/sknw (previously: https://github.com/yxdragon/sknw)
# sk_.draw_graph(obj_map, sknw_graph, cn=255, ce=128)
# pl_.matshow(obj_map, cmap="gray")
# pl_.title("SKNW")
# pl_.gca().set_axis_off()
# pl_.tight_layout(pad=0.3)
pl_.show()