Newer
Older
# Copyright CNRS/Inria/UNS
# Contributor(s): Eric Debreuve (since 2018)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# Base skeleton graph
from __future__ import annotations
NADAL Morgane
committed
import sklgraph.brick.edge as dg_
import sklgraph.brick.edge_update as eu_
import sklgraph.brick.node as nd_
import sklgraph.skl_map as sm_
from sklgraph.skl_map import skl_map_t
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from enum import Enum as enum_t
from typing import Callable, Dict, Optional, Tuple, Union
import matplotlib.pyplot as pl_
import networkx as nx_
import numpy as np_
import scipy.ndimage as im_
import skimage.draw as dw_
from mpl_toolkits import mplot3d as m3_
array_t = np_.ndarray
plot_mode_e = enum_t("plot_mode_e", "Networkx SKL SKL_Curve Graphviz")
class skl_graph_t(nx_.MultiGraph):
#
# Must be a unique connected component
#
__slots__ = ("dim", "bbox_lengths", "n_e_nodes", "n_b_nodes", "has_widths")
colormap = {0: "b", 1: "r", 2: "g"}
font_size = 6
width = 2
def __init__(self):
#
super().__init__()
for slot in self.__class__.__slots__:
setattr(self, slot, None)
@classmethod
def FromSkeleton(
cls, skeleton: skl_map_t, size_voxel: array_t) -> skl_graph_t:
#
instance = cls()
instance.bbox_lengths = skeleton.map.shape
instance.dim = instance.bbox_lengths.__len__()
instance.has_widths = skeleton.widths is not None
part_map = skeleton.PartMap()
if instance._DealsWithSpecialCases(part_map, widths=skeleton.widths):
return instance
e_nodes, e_node_lmap = nd_.EndNodes(part_map, widths=skeleton.widths)
b_nodes, b_node_lmap = nd_.BranchNodes(part_map, widths=skeleton.widths)
edges, edge_lmap = dg_.RawEdges(skeleton.map, b_node_lmap)
eu_.AssignNodeIDsToEdges(
e_nodes, e_node_lmap, b_nodes, b_node_lmap, edges, edge_lmap
)
instance.add_nodes_from((node.uid, dict(as_node_t=node)) for node in e_nodes)
instance.add_nodes_from((node.uid, dict(as_node_t=node)) for node in b_nodes)
for edge in edges:
edge.SetLengths(widths=skeleton.widths, size_voxel=size_voxel)
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
instance.AddEdge(edge)
instance.n_e_nodes = e_nodes.__len__()
instance.n_b_nodes = b_nodes.__len__()
return instance
def _DealsWithSpecialCases(self, part_map: array_t, widths: array_t = None) -> bool:
#
invalid_n_neighbors = sm_.InvalidNNeighborsForMap(part_map)
singleton = np_.where(part_map == 0)
if singleton[0].size > 0:
# Can only be 1 then (see SkeletonIsValid)
assert singleton[0].size == 1
singleton = np_.array(singleton, dtype=np_.int64).squeeze()
end_node = nd_.end_node_t.WithPosition(singleton, widths=widths)
self.add_node(end_node.uid, as_node_t=end_node)
return True
#
elif np_.logical_or(part_map == 2, part_map == invalid_n_neighbors).all():
# TODO: Handle '3x3-cross with missing central pixel'-case and other self-loops w/o nodes
print(
"Self-loop skeleton: Not handled yet; An exception will probably raise shortly!"
)
return True
return False
@property
def is_valid(self) -> bool:
#
return (sum([degree == 1 for _, degree in self.degree]) == self.n_e_nodes) and (
sum([degree > 1 for _, degree in self.degree]) == self.n_b_nodes
)
def AddEdge(self, edge: dg_.edge_t) -> None:
#
assert edge.node_uids.__len__() == 2
edge_id = edge.uid
version_number = 1
edge_id_w_vn = edge_id
while self.has_edge(*edge.node_uids, key=edge_id_w_vn):
version_number += 1
edge_id_w_vn = edge_id + "+" + version_number.__str__()
self.add_edge(*edge.node_uids, key=edge_id_w_vn, as_edge_t=edge)
def RebuiltSkeletonMap(self) -> array_t:
#
# Not uint to allow for subtraction
map_ = np_.zeros(self.bbox_lengths, dtype=np_.int8)
for ___, ___, edge in self.edges.data("as_edge_t"):
map_[edge.sites] = 2
for ___, node in self.nodes.data("as_node_t"):
if isinstance(node, nd_.branch_node_t):
map_[node.sites] = 3
else:
map_[tuple(node.position)] = 1
return map_
def RebuiltObjectMap(self) -> array_t:
#
if not self.has_widths:
raise ValueError("Requires an SKL graph with widths")
# Not uint to allow for subtraction
map_ = np_.zeros(self.bbox_lengths, dtype=np_.int8)
if self.dim == 2:
ball_fct = dw_.circle
else:
ball_fct = _Sphere
for ___, node in self.nodes.data("as_node_t"):
if isinstance(node, nd_.branch_node_t):
for *sites, radius in zip(
*node.sites,
np_.around(0.5 * (node.diameters - 1.0)).astype(np_.int64),
):
map_[ball_fct(*sites, radius, shape=map_.shape)] = 1
else:
map_[
ball_fct(
*node.position,
np_.around(0.5 * (node.diameter - 1.0))
.astype(np_.int64)
.item(),
shape=map_.shape,
)
] = 1
for ___, ___, edge in self.edges.data("as_edge_t"):
for *sites, radius in zip(
*edge.sites, np_.around(0.5 * (edge.widths - 1.0)).astype(np_.int64)
):
map_[ball_fct(*sites, radius, shape=map_.shape)] = 1
return map_
def Plot(
self,
figure: pl_.Figure = None,
axes: pl_.axes.Axes = None,
mode: plot_mode_e = plot_mode_e.SKL,
w_directions: bool = False,
colormap: dict = None,
font_size: int = None,
width: float = None,
should_block: bool = True,
should_return_figure: bool = False,
should_return_axes: bool = False,
) -> Optional[Union[object, Tuple[object, object]]]:
#
if self.number_of_nodes() < 1:
print(f"{__name__}.{self.Plot.__name__}: Empty graph")
return
if axes is None:
if figure is None:
figure = pl_.figure()
if self.dim == 2:
axes = figure.gca()
else:
axes = figure.add_subplot(1, 1, 1, projection=m3_.Axes3D.name)
axes.invert_yaxis()
else:
figure = axes.get_figure()
if axes.yaxis_inverted():
transformation = lambda y: y
vector_transf = lambda y: y
else:
max_0 = self.bbox_lengths[0] - 1
transformation = lambda y: max_0 - np_.asarray(y)
vector_transf = lambda y: -np_.asarray(y)
transform_coords = lambda pos: (pos[1], transformation(pos[0]), *pos[2:])
positions_as_dict = dict(
(uid, transform_coords(node.position))
for uid, node in self.nodes.data("as_node_t")
)
if font_size is None:
font_size = skl_graph_t.font_size
if self.dim == 2:
if mode is plot_mode_e.Networkx:
self._PlotWithNetworkX(
positions_as_dict, axes, colormap, font_size, width
)
#
elif mode in (plot_mode_e.SKL, plot_mode_e.SKL_Curve):
self._PlotExplicitly(
positions_as_dict,
transformation,
vector_transf,
axes,
font_size,
mode is plot_mode_e.SKL_Curve,
w_directions,
)
#
elif mode is plot_mode_e.Graphviz:
self._PlotWithGraphviz(axes)
#
else:
raise ValueError(f"{mode}: Invalid mode")
#
else:
self._PlotExplicitly(
positions_as_dict,
transformation,
vector_transf,
axes,
font_size,
mode is plot_mode_e.SKL_Curve,
w_directions,
)
if self.dim == 2:
# Matplotlib says: NotImplementedError: It is not currently possible to manually set the aspect on 3D axes
axes.axis("equal")
if should_block:
pl_.show() # Better named as TriggerMatplotlibEventLoop
if should_return_figure:
if should_return_axes:
return figure, axes
else:
return figure
elif should_return_axes:
return axes
def _PlotWithNetworkX(
self,
positions_as_dict: Dict[str, Tuple[int, ...]],
axes: pl_.axes.Axes,
colormap: dict,
font_size: int,
width: float,
) -> None:
#
if colormap is None:
colormap = skl_graph_t.colormap
if width is None:
width = skl_graph_t.width
node_degrees = (elm[1] for elm in self.degree)
node_colors = tuple(
colormap[degree] if degree < 3 else colormap[2] for degree in node_degrees
)
nx_.draw_networkx(
self,
ax=axes,
pos=positions_as_dict,
with_labels=True,
node_color=node_colors,
font_size=font_size,
width=width,
)
nx_.draw_networkx_edge_labels(
self,
ax=axes,
pos=positions_as_dict,
edge_labels=self._EdgeIDsForPlot(),
font_size=font_size,
)
def _PlotExplicitly(
self,
positions_as_dict: Dict[str, Tuple[int, ...]],
transformation: Callable[[array_t], array_t],
vector_transf: Callable[[array_t], array_t],
axes: pl_.axes.Axes,
font_size: int,
as_curve: bool,
w_directions: bool,
) -> None:
#
dg_.Plot(
self.edges.data("as_edge_t"),
transformation,
vector_transf,
axes,
as_curve=as_curve,
w_directions=w_directions,
)
nd_.PlotEndNodes(self.nodes.data("as_node_t"), transformation, axes)
if self.dim == 2:
nd_.Plot2DBranchNodes(self.nodes.data("as_node_t"), transformation, axes)
nx_.draw_networkx_labels(
self, ax=axes, pos=positions_as_dict, font_size=font_size
)
else:
nd_.Plot3DBranchNodes(self.nodes.data("as_node_t"), transformation, axes)
nd_.Plot3DNodeLabels(self, positions_as_dict, axes, font_size)
def _PlotWithGraphviz(self, axes: pl_.axes.Axes) -> None:
#
try:
import imageio as io_
import pygraphviz as gp_
import tempfile as tp_
graph = nx_.nx_agraph.to_agraph(self)
with tp_.NamedTemporaryFile() as tmp_accessor:
img_name = tmp_accessor.name
graph.layout()
graph.draw(img_name, format="png")
axes.imshow(io_.imread(img_name))
except Exception as exc:
axes.text(
0,
0,
f"Unable to plot graph using pygraphviz/imageio.\nPlease check installed modules.\n[{exc}]",
horizontalalignment="center",
)
def _EdgeIDsForPlot(self) -> Dict[str, str]:
#
lengths_as_dict = nx_.get_edge_attributes(self, "length")
w_lengths_as_dict = (
nx_.get_edge_attributes(self, "w_length") if self.has_widths else None
)
w_length_str = ""
edge_ids = {}
for key, value in lengths_as_dict.items():
if w_lengths_as_dict is not None:
w_length_str = "/" + str(round(w_lengths_as_dict[key]))
edge_ids[key[0:2]] = key[2] + "\n" + str(round(value)) + w_length_str
return edge_ids
def _Sphere(
row: int, col: int, dep: int, radius: int, shape: Tuple[int, int, int]
) -> array_t:
#
sphere = np_.zeros(shape, dtype=np_.bool)
# dw_.ellipsoid leaves a one pixel margin around the ellipse, hence [1:-1, 1:-1, 1:-1]
ellipse = dw_.ellipsoid(radius, radius, radius)[1:-1, 1:-1, 1:-1]
sp_slices = tuple(
slice(0, min(sphere.shape[idx_], ellipse.shape[idx_])) for idx_ in (0, 1, 2)
)
sphere[sp_slices] = ellipse[sp_slices]
return im_.shift(
sphere, (row - radius, col - radius, dep - radius), order=0, prefilter=False
)