Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright CNRS/Inria/UNS
# Contributor(s): Eric Debreuve (since 2019)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
"""
Dijkstra Shortest Weighted Path from one image/volume pixel/voxel to one or more image/volume pixel(s)/voxel(s)
Graph nodes = pixels/voxels = sites
Graph edges = pixel/voxel neighborhood relationships
Edge weights = typically computed from pixel/voxel values
Adapted from material of a course by Marc Pegon:
https://www.ljll.math.upmc.fr/pegon/teaching.html
https://www.ljll.math.upmc.fr/pegon/documents/BCPST/TP06_src.tar.gz
https://www.researchgate.net/profile/Marc_Pegon
"""
import heapq as hp_
from typing import Final, Iterator, List, Optional, Sequence, Tuple, Union
import scipy.ndimage.morphology as mp_
# Slightly slower alternative (look for SSA below)
# import scipy.ndimage as im_
# import skimage.draw as dw_
number_h = Union[int, float]
tintegers_h = Tuple[int, ...] # tintegers=tuple of integers
site_h = tintegers_h
path_h = Tuple[site_h, ...]
path_nfo_h = Tuple[path_h, float]
def DijkstraCosts(image: array_t, som_map: array_t, ext_map: array_t) -> array_t:
"""
Gives the value inf if the voxel belongs to a soma or an extension.
Otherwise, gives the value 1 / (voxel intensity + 1).
The closer to cost 1, the less probable a connexion will take this path.
The closer to cost 0.5, the more probable.
"""
dijkstra_costs = 1.0 / (image + 1.0)
dijkstra_costs[nmpy.logical_or(som_map > 0, ext_map > 0)] = nmpy.inf
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
return dijkstra_costs
def DijkstraShortestPath(
costs: array_t,
origin: site_h,
target: Union[site_h, Sequence[site_h]],
limit_to_sphere: bool = True,
constrain_direction: bool = True,
return_all: bool = False,
) -> Union[path_nfo_h, Tuple[path_nfo_h, ...]]:
"""
Perform the Dijkstra shortest weighted path algorithm
"""
#
costs, targets, valid_directions, dir_lengths = _DijkstraShortestPathPrologue(
costs,
origin,
target,
limit_to_sphere,
constrain_direction,
)
nearest_sites = nearest_site_queue_t()
nearest_sites.Insert(0, origin)
min_distance_to = {origin: 0.0}
predecessor_of = {}
visited_sites = set()
while True:
site_nfo = nearest_sites.Pop()
if site_nfo is None:
# Empty queue: full graph traversal did not allow to reach all targets
# This case is correctly dealt with in the following
break
distance, site = site_nfo
if site in targets:
targets.remove(site)
if targets.__len__() > 0:
continue
else:
break
if site not in visited_sites:
visited_sites.add(site)
for successor, edge_length in _OutgoingEdges(
site, valid_directions, dir_lengths, costs
):
successor = tuple(successor)
next_distance = distance + edge_length
min_distance = min_distance_to.get(successor)
if (min_distance is None) or (next_distance < min_distance):
min_distance_to[successor] = next_distance
predecessor_of[successor] = site
nearest_sites.Insert(next_distance, successor)
if isinstance(target[0], Sequence):
targets = tuple(target)
else:
targets = (target,)
if return_all:
all_paths = []
for one_target in targets:
distance = min_distance_to.get(one_target)
if distance is None:
all_paths.append(((), None))
else:
path = []
site = one_target
while site is not None:
path.append(site)
site = predecessor_of.get(site)
all_paths.append((tuple(reversed(path)), distance))
return tuple(all_paths)
else:
min_distance = nmpy.inf
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
closest_target = None
for one_target in targets:
distance = min_distance_to.get(one_target)
if (distance is not None) and (distance < min_distance):
min_distance = distance
closest_target = one_target
path = []
if closest_target is None:
distance = None
else:
distance = min_distance_to.get(closest_target)
site = closest_target
while site is not None:
path.append(site)
site = predecessor_of.get(site)
return tuple(reversed(path)), distance
def _DijkstraShortestPathPrologue(
costs: array_t,
origin: site_h,
target: Union[site_h, Sequence[site_h]],
limit_to_sphere: bool,
constrain_direction: bool,
) -> Tuple[array_t, List[site_h], array_t, array_t]:
#
if isinstance(target[0], Sequence):
targets = list(target)
else:
targets = [target]
if limit_to_sphere:
costs = _SphereLimitedCosts(costs, origin, targets)
if costs.ndim == 2:
if constrain_direction:
valid_directions, dir_lengths = _FilteredDirections(
DIRECTIONS_2D, LENGTHS_2D, origin, targets
)
else:
valid_directions, dir_lengths = DIRECTIONS_2D, LENGTHS_2D
elif costs.ndim == 3:
if constrain_direction:
valid_directions, dir_lengths = _FilteredDirections(
DIRECTIONS_3D, LENGTHS_3D, origin, targets
)
else:
valid_directions, dir_lengths = DIRECTIONS_3D, LENGTHS_3D
else:
raise ValueError(f"Cost matrix has {costs.ndim} dimension(s); Expecting 2 or 3")
return costs, targets, valid_directions, dir_lengths
def _OutgoingEdges(
site: site_h, valid_directions: array_t, dir_lengths: array_t, costs: array_t
) -> Iterator:
#
neighbors = valid_directions + nmpy.array(site, dtype=valid_directions.dtype)
inside = nmpy.all(neighbors >= 0, axis=1)
inside, neighbors[:, c_idx] <= costs.shape[c_idx] - 1, out=inside
)
neighbors = neighbors[inside, :]
dir_lengths = dir_lengths[inside]
# For any n_dims: neighbors_costs = costs[tuple(zip(*neighbors.tolist()))]
if n_dims == 2:
neighbors_costs = costs[(neighbors[:, 0], neighbors[:, 1])]
else:
neighbors_costs = costs[(neighbors[:, 0], neighbors[:, 1], neighbors[:, 2])]
valid_sites = nmpy.isfinite(neighbors_costs) # Excludes inf and nan
neighbors = neighbors[valid_sites, :]
neighbors_costs = neighbors_costs[valid_sites] * dir_lengths[valid_sites]
return zip(neighbors.tolist(), neighbors_costs)
DIRECTIONS_2D: Final = nmpy.array(
tuple((i, j) for i in (-1, 0, 1) for j in (-1, 0, 1) if i != 0 or j != 0),
DIRECTIONS_3D: Final = nmpy.array(
tuple(
(i, j, k)
for i in (-1, 0, 1)
for j in (-1, 0, 1)
for k in (-1, 0, 1)
if i != 0 or j != 0 or k != 0
),
LENGTHS_2D: Final = nmpy.linalg.norm(DIRECTIONS_2D, axis=1)
LENGTHS_3D: Final = nmpy.linalg.norm(DIRECTIONS_3D, axis=1)
def _FilteredDirections(
all_directions: array_t,
all_lengths: array_t,
origin: site_h,
targets: Sequence[site_h],
) -> Tuple[array_t, array_t]:
#
n_dims = origin.__len__()
n_targets = targets.__len__()
straight_lines = nmpy.empty((n_dims, n_targets), dtype=nmpy.float64)
for p_idx, target in enumerate(targets):
for c_idx in range(n_dims):
straight_lines[c_idx, p_idx] = target[c_idx] - origin[c_idx]
inner_prods = all_directions @ straight_lines
valid_directions = nmpy.any(inner_prods >= 0, axis=1)
return all_directions[valid_directions, :], all_lengths[valid_directions]
def _SphereLimitedCosts(
costs: array_t, origin: site_h, targets: Sequence[site_h]
) -> array_t:
"""
Note: Un-numba-ble because of slice
"""
valid_sites = nmpy.zeros_like(costs, dtype=nmpy.bool_)
center_map = nmpy.ones_like(costs, dtype=nmpy.uint8)
distances = nmpy.empty_like(costs, dtype=nmpy.float64)
targets_as_array = nmpy.array(targets)
centers = nmpy.around(0.5 * targets_as_array.__add__(origin)).astype(
nmpy.int64, copy=False
)
centers = tuple(tuple(center) for center in centers)
n_dims = origin.__len__()
for t_idx, target in enumerate(targets):
sq_radius = max(
(nmpy.subtract(centers[t_idx], origin) ** 2).sum(),
(nmpy.subtract(centers[t_idx], target) ** 2).sum(),
radius = nmpy.sqrt(sq_radius).astype(nmpy.int64, copy=False) + 1
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Note the +1 in slices ends to account for right-open ranginess
bbox = tuple(
slice(
max(centers[t_idx][c_idx] - radius, 0),
min(centers[t_idx][c_idx] + radius + 1, distances.shape[c_idx]),
)
for c_idx in range(n_dims)
)
if t_idx > 0:
center_map[centers[t_idx - 1]] = 1
center_map[centers[t_idx]] = 0
mp_.distance_transform_edt(center_map[bbox], distances=distances[bbox])
distance_thr = max(distances[origin], distances[target])
valid_sites[bbox][distances[bbox] <= distance_thr] = True
# # SSA
# if n_dims == 2:
# valid_coords = dw_.circle(
# *centers[t_idx], radius, shape=valid_sites.shape
# )
# else:
# local_shape = tuple(slc.stop - slc.start for slc in bbox)
# local_center = tuple(centers[t_idx][c_idx] - slc.start for c_idx, slc in enumerate(bbox))
# valid_coords = __SphereCoords__(*local_center, radius, shape=local_shape)
# valid_coords = tuple(valid_coords[c_idx] + slc.start for c_idx, slc in enumerate(bbox))
# valid_sites[valid_coords] = True
local_cost = costs.copy()
local_cost[nmpy.logical_not(valid_sites)] = nmpy.inf
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
return local_cost
class nearest_site_queue_t:
#
__slots__ = ("heap", "insertion_idx", "visited_sites")
def __init__(self):
#
self.heap = []
self.insertion_idx = 0
self.visited_sites = {}
def Insert(self, distance: number_h, site: site_h) -> None:
"""
Insert a new site with its distance, or update the distance of an existing site
"""
if site in self.visited_sites:
self._Delete(site)
self.insertion_idx += 1
site_nfo = [distance, self.insertion_idx, site]
self.visited_sites[site] = site_nfo
hp_.heappush(self.heap, site_nfo)
def Pop(self) -> Optional[Tuple[number_h, site_h]]:
"""
Return (distance, site) for the site of minimum distance, or None if queue is empty
"""
while self.heap:
distance, _, site = hp_.heappop(self.heap)
if site is not None:
del self.visited_sites[site]
return distance, site
return None
def _Delete(self, site: site_h) -> None:
#
site_nfo = self.visited_sites.pop(site)
site_nfo[-1] = None
# # SSA
# def __SphereCoords__(
# row: int, col: int, dep: int, radius: int, shape: Tuple[int, int, int]
# ) -> np_array_picker_h:
# #
# sphere = nmpy.zeros(shape, dtype=nmpy.bool)
# # dw_.ellipsoid leaves a one pixel margin around the ellipse, hence [1:-1, 1:-1, 1:-1]
# ellipse = dw_.ellipsoid(radius, radius, radius)[1:-1, 1:-1, 1:-1]
# sp_slices = tuple(
# slice(0, min(sphere.shape[idx_], ellipse.shape[idx_])) for idx_ in (0, 1, 2)
# )
# sphere[sp_slices] = ellipse[sp_slices]
#
# sphere = im_.shift(
# sphere, (row - radius, col - radius, dep - radius), order=0, prefilter=False
# )
#
# return sphere.nonzero()