Mentions légales du service

Skip to content
Snippets Groups Projects
graph_feat_extraction.py 21.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
# Copyright CNRS/Inria/UNS
# Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020)
#
# eric.debreuve@cnrs.fr
#
# This software is governed by the CeCILL  license under French law and
# abiding by the rules of distribution of free software.  You can  use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and  rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty  and the software's author,  the holder of the
# economic rights,  and the successive licensors  have only  limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading,  using,  modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean  that it is complicated to manipulate,  and  that  also
# therefore means  that it is reserved for developers  and  experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and,  more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.

import re as re_
import numpy as np_
import math as mt_
import scipy.stats as st_
import pandas as pd_

from brick.component.soma import soma_t
from brick.general.type import array_t
import brick.processing.best_fit_ellipsoid as bf_
import brick.processing.input as in_
from typing import Tuple, Dict, Union, Any


def FindGraphsRootWithEdges(soma: soma_t, ext_nfo: Dict[str, Union[array_t, Any]]) -> dict:
    """
    Finds the soma roots of the graph extension.
    """
    # For a given soma, find the roots of the graphs
    root_nodes = {}

    # Finds the primary extensions
    primary_extension_uids = tuple(extension.uid for extension in soma.extensions)
    print(primary_extension_uids, '\nn = ', len(primary_extension_uids))

    # List of the degree 1 nodes of the graph
    for node1_id, node2_id, edge_nfo in soma.skl_graph.edges.data('as_edge_t'):
        if (soma.skl_graph.degree[node1_id] == 1) or (soma.skl_graph.degree[node2_id] == 1):

            # Find the pixels of the terminal extension
            sites = ext_nfo['lmp'][edge_nfo.sites]
            ext_uid = np_.unique(sites)[-1]
            # sites > 0 because ext_nfo['lmp'] do not contain the connexions

            # Save the root node candidates (one-degree nodes)
            if ext_uid in primary_extension_uids:
                if soma.skl_graph.degree[node1_id] == 1:
                    root_node = node1_id
                else:
                    root_node = node2_id

                # Get the node coordinates and extend them to the 26 neighboring voxels
                root_node_coor = GetNodesCoordinates((root_node,))[0]  # tuple('x-y-z') -> list[(x,y,z)]

                root_sites = set(
                    (root_node_coor[0] + i, root_node_coor[1] + j, root_node_coor[2] + k)
                    for i in (-1, 0, 1)
                    for j in (-1, 0, 1)
                    for k in (-1, 0, 1)
                    if i != 0 or j != 0 or k != 0)

                # Find the intersection between the extended root node candidate and the soma contour points
                intersections = set(soma.contour_points).intersection(root_sites)

                # if the graph root sites are included in the soma extensions sites (non-nul intersection):
                if len(intersections) > 0:
                    # Keep the info of the root node. Key = ext uid, Value = root node
                    root_nodes[ext_uid] = root_node
                        ## By construction, only one root node possible for an ext

    return root_nodes  # TODO: find out why there are less root points than extensions !!


def FindGraphsRootWithNodes(soma: soma_t) -> dict:
    """
    Find the roots of the {extension+connexion} graphs to be lined to the soma.
    Add a key "root" (bool) in the dict of nodes attributes.
    """

    node_degree_bool = tuple(degree == 1 for _, degree in soma.skl_graph.degree)
    node_coord = tuple(xyz for xyz, _ in soma.skl_graph.degree)

    root_nodes = {}

    # get the coordinates of the nodes (x,y,z)
    coordinates = GetNodesCoordinates(node_coord)

    # get a list with elements = (soma_uid, extension_uid, root coordinates)
    roots = GetListRoots(soma)

    # for each node in the graph, search among the degree 1 nodes the nodes that are roots (linked to soma)
    for node in range(len(coordinates)):
        if node_degree_bool[node]:
            # compare the coor with end points
            for ext_root in roots:
                if ext_root[1] == coordinates[node]:
                    root_nodes[ext_root[0]] = node_coord[node]

    return root_nodes


def GetListRoots(soma: soma_t) -> list:
    """
    Gives a list containing the following information for all somas: [soma id: int, extension id: int, root = (x,y,z): tuple]
    """
    roots = []
    for ext_id, ext_root in enumerate(soma.ext_roots):
        roots.append((soma.extensions[ext_id].uid, ext_root))
    return roots


def GetNodesCoordinates(node_coord: Tuple[str, ...]) -> list:
    """
    Input: nodes attributes -> Tuple('x1-y1-z1', 'x2-y2-z2', ...) .
    Output: coordinates -> List[Tuple(x1,y1,z1), Tuple(x2,y2,z2), ...]
    """
    coord = []
    for c in node_coord:
        coord.append(c)

    for node in range(len(node_coord)):
        coord_node = coord[node]
        pattern = '\d+'
        coord_node = re_.findall(pattern, coord_node)
        coor = []
        for i in range(3):
            coor.append(int(coord_node[i]))
        coor = tuple(coor)
        coord[node] = coor

    return coord


def ExtractFeaturesInDF(somas, size_voxel_in_micron: list, number_of_bins: int, max_range: float, hist_min_length: float, scale_map: array_t, decimals: int = 4):
    """
    Extract the features from somas and graphs.
    Returns a pandas dataframe.
    """
    somas_features_dict = {}  # Dict{soma 1: [features], soma 2: [features], ...}
    columns = [
        "Coef_V_soma__V_convex_hull",
        "Coef_axes_ellips_b__a",
        "Coef_axes_ellips_c__a",
        "N_nodes",
        "N_ext",
        "N_primary_ext",
        "N_sec_ext",
        "highest_degree",
        "min_degree",
        "mean_degree",
        "median_degree",
        "max_degree",
        "std_degree",
        "ext_lengths",
        "total_ext_length",
        "min_length",
        "mean_length",
        "median_length",
        "max_length",
        "std_lengths",
        "entropy_lengths",
        "hist_lengths",
        "ext_thickness",
        "ext_volume",
        "min_thickness",
        "mean_thickness",
        "median_thickness",
        "max_thickness",
        "std_thickness",
        "entropy_thickness",
        "ext_lengths_P",
        "total_ext_length_P",
        "min_length_P",
        "mean_length_P",
        "median_length_P",
        "max_length_P",
        "std_lengths_P",
        "entropy_lengths_P",
        "hist_lengths_P",
        "ext_thickness_P",
        "ext_volume_P",
        "min_thickness_P",
        "mean_thickness_P",
        "median_thickness_P",
        "max_thickness_P",
        "std_thickness_P",
        "entropy_thickness_P",
        "ext_lengths_S",
        "total_ext_length_S",
        "min_length_S",
        "mean_length_S",
        "median_length_S",
        "max_length_S",
        "std_lengths_S",
        "entropy_lengths_S",
        "hist_lengths_S",
        "ext_thickness_S",
        "ext_volume_S",
        "min_thickness_S",
        "mean_thickness_S",
        "median_thickness_S",
        "max_thickness_S",
        "std_thickness_S",
        "entropy_thickness_S",
    ]

    for soma in somas:
        # Soma features
        # print('***Soma***')
        # # Volume of the soma
        volume_pixel_micron = round(np_.prod(size_voxel_in_micron), 4)
        soma.volume_soma_micron = volume_pixel_micron * len(soma.sites[0])
        volume_convex_hull = volume_pixel_micron * bf_.GetConvexHull3D(soma.sites)[1]
        Coef_V_soma__V_convex_hull = soma.volume_soma_micron / volume_convex_hull
        # print(
        #     f"Volume soma = {soma.volume_soma_micron}\n"
        #     f"Volume soma / Volume Convex Hull = {Coef_V_soma__V_convex_hull}"
        #       )

        # # Axes of the best fitting ellipsoid
        soma.axes_ellipsoid = bf_.FindBestFittingEllipsoid3D(soma)[2]
        Coef_axes_ellips_b__a = soma.axes_ellipsoid[1] / soma.axes_ellipsoid[0]
        Coef_axes_ellips_c__a = soma.axes_ellipsoid[2] / soma.axes_ellipsoid[0]

        # -- Extension features
        # # Graph features
        N_nodes = soma.skl_graph.n_nodes  # number of nodes
        N_ext = soma.skl_graph.n_edges - len(
            soma.graph_roots)  # number of edges except the constructed ones from node soma to the roots
        N_primary_ext = len(
            soma.graph_roots)  # number of primary edges = linked to the soma except the constructed ones from node soma to the roots
        N_sec_ext = N_ext - N_primary_ext  # number of secondary edges = not linked to the soma.

        print(
            # f"\n***Extension***\n"
            f"\n Soma {soma.uid}\n"
            f"N nodes = {N_nodes}\n"
            f"N edges = {N_ext}\n"
            f"N primary extensions = {N_primary_ext}\n"
            f"N secondary extensions = {N_sec_ext}\n"
        )

        if N_primary_ext > 0:
            # Calculate the extensions lengths
            ext_lengths = list(soma.skl_graph.edge_lengths)
            for idx, length in enumerate(ext_lengths):
                ext_lengths[idx] = in_.ToMicron(length, size_voxel_in_micron, decimals=decimals)
            total_ext_length = in_.ToMicron(soma.skl_graph.length, size_voxel_in_micron, decimals=decimals)
            #
            # Lengths histogram
            hist_lengths = np_.histogram(ext_lengths, bins=number_of_bins, range=(hist_min_length, max_range))
            #
            # min, mean, median, max and standard deviation of the ALL extensions
            min_length = in_.ToMicron(soma.skl_graph.min_length, size_voxel_in_micron, decimals=decimals)
            mean_length = in_.ToMicron(soma.skl_graph.mean_length, size_voxel_in_micron, decimals=decimals)
            median_length = in_.ToMicron(soma.skl_graph.median_length, size_voxel_in_micron, decimals=decimals)
            max_length = in_.ToMicron(soma.skl_graph.max_length, size_voxel_in_micron, decimals=decimals)
            std_lengths = np_.std(ext_lengths)
            entropy_lengths = st_.entropy(ext_lengths)

            # Find the thickness of the extensions
            for ___, ___, edge in soma.skl_graph.edges.data("as_edge_t"):
                if edge is not None:
                    edge.widths = scale_map[edge.sites] * size_voxel_in_micron[1]
            mean_widths = soma.skl_graph.edge_reduced_widths()
            ext_thickness = np_.array(mean_widths) ** 2
            ext_volume = np_.array(ext_lengths) * ext_thickness
            #
            min_thickness = min(ext_thickness)
            mean_thickness = np_.mean(ext_thickness)
            median_thickness = np_.median(ext_thickness)
            max_thickness = max(ext_thickness)
            std_thickness = np_.std(ext_thickness)
            entropy_thickness = st_.entropy(ext_thickness)
            #

            # print(
            #     f"ALL EXTENSIONS\n  Total Length = {total_ext_length} <- {ext_lengths}\n"
            #     f"  Min/Mean/Median/Max Length = {min_length} / {mean_length} / {median_length} / {max_length}\n"
            #     f"  Standard Deviation = {std_lengths} / Entropy = {entropy_lengths}")

            # pl_.plot(hist_lengths[1][:-1], hist_lengths[0])

            # PRIMARY extensions
            ext_lengths_P = list(soma.skl_graph.primary_edge_lengths(soma))
            for idx, length in enumerate(ext_lengths_P):
                ext_lengths_P[idx] = in_.ToMicron(length, size_voxel_in_micron, decimals=decimals)
            total_ext_length_P = sum(ext_lengths_P)
            #
            # Lengths histogram
            hist_lengths_P = np_.histogram(ext_lengths_P, bins=number_of_bins, range=(hist_min_length, max_range))
            #
            # min, mean, median, max and standard deviation of the PRIMARY extensions
            min_length_P = min(ext_lengths_P)
            mean_length_P = np_.mean(ext_lengths_P)
            median_length_P = np_.median(ext_lengths_P)
            max_length_P = max(ext_lengths_P)
            std_lengths_P = np_.std(ext_lengths_P)
            entropy_lengths_P = st_.entropy(ext_lengths_P)
            #
            mean_widths_P = soma.skl_graph.P_edge_reduced_widths(soma)
            ext_thickness_P = np_.array(mean_widths_P) ** 2
            ext_volume_P = np_.array(ext_lengths_P) * ext_thickness_P
            #
            min_thickness_P = min(ext_thickness_P)
            mean_thickness_P = np_.mean(ext_thickness_P)
            median_thickness_P = np_.median(ext_thickness_P)
            max_thickness_P = max(ext_thickness_P)
            std_thickness_P = np_.std(ext_thickness_P)
            entropy_thickness_P = st_.entropy(ext_thickness_P)
            #

            # print(
            #     f"PRIMARY EXTENSIONS\n  Total Length = {total_ext_length_P}\n"
            #     f"  Min/Mean/Median/Max Length = {min_length_P} / {mean_length_P} / {median_length_P} / {max_length_P}\n"
            #     f"  Standard Deviation = {std_lengths_P} / Entropy = {entropy_lengths_P}")

            # pl_.plot(hist_lengths_P[1][:-1], hist_lengths_P[0])

            if N_sec_ext > 0:
                highest_degree = soma.skl_graph.max_degree  # highest degree of the nodes except the soma
                if highest_degree == 2:
                    highest_degree = 1
                highest_degree_w_node = soma.skl_graph.highest_degree_w_nodes(
                    soma)  # highest degree of the nodes with the node coordinates except the soma
                # min, mean, median, max and standard deviation of the degrees of non-leaves nodes
                min_degree = soma.skl_graph.min_degree_except_leaves_and_roots
                mean_degree = soma.skl_graph.mean_degree_except_leaves_and_roots
                median_degree = soma.skl_graph.median_degree_except_leaves_and_roots
                max_degree = soma.skl_graph.max_degree_except_leaves_an_roots
                std_degree = soma.skl_graph.std_degree_except_leaves_and_roots

                # SECONDARY extensions length
                ext_lengths_S = list(soma.skl_graph.secondary_edge_lengths(soma))
                for idx, length in enumerate(ext_lengths_S):
                    ext_lengths_S[idx] = in_.ToMicron(length, size_voxel_in_micron, decimals=decimals)
                total_ext_length_S = sum(ext_lengths_S)
                #
                # Lengths histogram
                hist_lengths_S = np_.histogram(ext_lengths_S, bins=number_of_bins, range=(hist_min_length, max_range))
                #
                # min, mean, median, max and standard deviation of the PRIMARY extensions
                min_length_S = min(ext_lengths_S)
                mean_length_S = np_.mean(ext_lengths_S)
                median_length_S = np_.median(ext_lengths_S)
                max_length_S = max(ext_lengths_S)
                std_lengths_S = np_.std(ext_lengths_S)
                entropy_lengths_S = st_.entropy(ext_lengths_S)
                #
                mean_widths_S = soma.skl_graph.S_edge_reduced_widths(soma)
                ext_thickness_S = np_.array(mean_widths_S) ** 2
                ext_volume_S = np_.array(ext_lengths_S) * ext_thickness_S
                #
                min_thickness_S = min(ext_thickness_S)
                mean_thickness_S = np_.mean(ext_thickness_S)
                median_thickness_S = np_.median(ext_thickness_S)
                max_thickness_S = max(ext_thickness_S)
                std_thickness_S = np_.std(ext_thickness_S)
                entropy_thickness_S = st_.entropy(ext_thickness_S)
                #

                # print(
                #     f"SECONDARY EXTENSIONS\n  Total Length = {total_ext_length_S}\n"
                #     f"  Min/Mean/Median/Max Length = {min_length_S} / {mean_length_S} / {median_length_S} / {max_length_S}\n"
                #     f"  Standard Deviation = {std_lengths_S} / Entropy = {entropy_lengths_S}"
                # )

                # pl_.plot(hist_lengths_S[1][:-1], hist_lengths_S[0])

            if N_sec_ext == 0:
                highest_degree = 1
                highest_degree_w_node = soma.skl_graph.highest_degree_w_nodes(
                    soma)  # highest degree of the nodes with the node coordinates except the soma
                # min, mean, median, max and standard deviation of the degrees of non-leaves nodes
                min_degree = 1
                mean_degree = 1
                median_degree = 1
                max_degree = 1
                std_degree = 0

                ext_lengths_S = None
                total_ext_length_S = 0
                min_length_S = None
                mean_length_S = None
                median_length_S = None
                max_length_S = None
                std_lengths_S = None
                entropy_lengths_S = None
                hist_lengths_S = None

                ext_thickness_S = None
                ext_volume_S = None
                #
                min_thickness_S = None
                mean_thickness_S = None
                median_thickness_S = None
                max_thickness_S = None
                std_thickness_S = None
                entropy_thickness_S = None

        else:
            ext_lengths = None
            total_ext_length = 0
            min_length = None
            mean_length = None
            median_length = None
            max_length = None
            std_lengths = None
            entropy_lengths = None
            hist_lengths = None
            ext_thickness = None
            ext_volume = None
            min_thickness = None
            mean_thickness = None
            median_thickness = None
            max_thickness = None
            std_thickness = None
            entropy_thickness = None
            ext_lengths_P = None
            total_ext_length_P = 0
            min_length_P = None
            mean_length_P = None
            median_length_P = None
            max_length_P = None
            std_lengths_P = None
            entropy_lengths_P = None
            hist_lengths_P = None
            ext_thickness_P = None
            ext_volume_P = None
            min_thickness_P = None
            mean_thickness_P = None
            median_thickness_P = None
            max_thickness_P = None
            std_thickness_P = None
            entropy_thickness_P = None
            ext_lengths_S = None
            total_ext_length_S = 0
            min_length_S = None
            mean_length_S = None
            median_length_S = None
            max_length_S = None
            std_lengths_S = None
            entropy_lengths_S = None
            hist_lengths_S = None
            ext_thickness_S = None
            ext_volume_S = None
            min_thickness_S = None
            mean_thickness_S = None
            median_thickness_S = None
            max_thickness_S = None
            std_thickness_S = None
            entropy_thickness_S = None

        #
        # print(
        #     f"NODES DEGREES\n"
        #     f"Highest degree (except soma) = {highest_degree}/{highest_degree_w_node}\n"
        #     f"Min/Mean/Median/Max degree (except soma & leaves) = {min_degree} / {mean_degree} / {median_degree} / {max_degree}\n"
        #     f"Standard deviation (except soma & leaves) = {std_degree}\n\n"
        # )

        somas_features_dict[f"soma {soma.uid}"] = [
            Coef_V_soma__V_convex_hull,
            Coef_axes_ellips_b__a,
            Coef_axes_ellips_c__a,
            N_nodes,
            N_ext,
            N_primary_ext,
            N_sec_ext,
            highest_degree,
            min_degree,
            mean_degree,
            median_degree,
            max_degree,
            std_degree,
            ext_lengths,
            total_ext_length,
            min_length,
            mean_length,
            median_length,
            max_length,
            std_lengths,
            entropy_lengths,
            hist_lengths,
            ext_thickness,
            ext_volume,
            min_thickness,
            mean_thickness,
            median_thickness,
            max_thickness,
            std_thickness,
            entropy_thickness,
            ext_lengths_P,
            total_ext_length_P,
            min_length_P,
            mean_length_P,
            median_length_P,
            max_length_P,
            std_lengths_P,
            entropy_lengths_P,
            hist_lengths_P,
            ext_thickness_P,
            ext_volume_P,
            min_thickness_P,
            mean_thickness_P,
            median_thickness_P,
            max_thickness_P,
            std_thickness_P,
            entropy_thickness_P,
            ext_lengths_S,
            total_ext_length_S,
            min_length_S,
            mean_length_S,
            median_length_S,
            max_length_S,
            std_lengths_S,
            entropy_lengths_S,
            hist_lengths_S,
            ext_thickness_S,
            ext_volume_S,
            min_thickness_S,
            mean_thickness_S,
            median_thickness_S,
            max_thickness_S,
            std_thickness_S,
            entropy_thickness_S,
        ]


    features_df = pd_.DataFrame.from_dict(somas_features_dict, orient="index", columns=columns)

    return features_df